Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x,yz:(x+y+z)=0,25=1/4
=>xyz/100=1/4.(x+y+z)
=>100x+10y+z/100=x/4+y/4+z/4=(x+Y+z)/4
=>4.(100x+10y+z)=x+y+z
=>400x+40y+z=x+y+z
=>...
ko chắc
Ta có: \(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)
\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)
\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)
\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)
=>\(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}\)
=>\(M>\frac{x+y+z+t}{x+y+z+t}=1\)
=>M>1(1)
Lại có:
Áp dụng tính chất: Nếu \(\frac{a}{b}<1=>\frac{a}{b}<\frac{a+m}{b+m}\)
Ta có: \(\frac{x}{x+y+z}<\frac{x+t}{x+y+z+t}\)
\(\frac{y}{x+y+t}<\frac{y+z}{x+y+z+t}\)
\(\frac{z}{y+z+t}<\frac{z+x}{x+y+z+t}\)
\(\frac{t}{x+z+t}<\frac{t+y}{x+y+z+t}\)
=>\(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}<\frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}\)
=>\(M<\frac{2.\left(x+y+z+t\right)}{x+y+z+t}=2\)
=>M<2(2)
Từ (1) và (2)
=>1<M<2
=>M không là số tự nhiên
=>ĐPCM
Đặt A=x/x+y+z + y/x+y+t + z/y+z+t +t/x+z+t
-Chứng minh biểu thức nhỏ hơn 2 .
Ta có: A<x+t/x+y+z+t + y+z/x+y+t+z + z+x/y+z+t+x + t+y/x+t+y+z
A<x+t+y+z+z+x+t+y/x+y+t+z
A<2(x+t+y+z)/x+y+t+z
A<2
-Chứng minh biêu thức lớn hơn 1
A>x/x+y+t+z + y/x+y+t+z + t/x+y+z+t + z/x+y+t+z
A>x+y+t+z/z+x+y+t
A>1
Mà 1<A<2
Suy ra A không phải là STN
Có gì sai thì bạn sửa nhé
\(\Leftrightarrow x+y+z=z+y+x\)
\(\Rightarrow z+y+x=\frac{1}{2^2}\)
\(\Rightarrow z+y+x=0,25\)
\(\Rightarrow z+y+x-0,25=0\)
\(\Rightarrow\frac{4z+4y+4x-1}{4}=0\)
\(\Rightarrow4z+4y+4x-1=0\)
Tự làm tiếp nhé
ê ,doraemon đâu