K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2023

Từ 3 phương trình trên

\(\left(x+y+z\right)=\dfrac{-5}{x}=\dfrac{9}{y}=\dfrac{5}{z}=\dfrac{-5+9+5}{x+y+z}=\dfrac{9}{x+y+z}\)

\(\Rightarrow\left(x+y+z\right)^2=9\Rightarrow\left(x+y+z\right)=\pm3\)

+ Với \(x+y+z=3\) Thay vào từng phương trình ta có

\(x=-\dfrac{5}{3};y=3;z=\dfrac{5}{3}\)

+ Với \(x+y+z=-3\) Thay vào từng phương trình có

\(x=\dfrac{5}{3};y=3;z=-\dfrac{5}{3}\)

11 tháng 7 2023

Sorry trường hợp thứ 2 \(y=-3\)

15 tháng 8 2017

Ta có :*x(x+y+z) =   - 5 (1)

* y(x+y+z) = 9 (2)

* z(x+y+z)=5 (3)

Từ (1) ; (2) và (3) , ta có :

x(x+y+z) + y(x+y+z) + z(x+y+z) = -5 + 9 + 5

Dựa vào tính chất phân phối của phép nhân đối với phép cộng , ta có :

 (x+y+z) . (x+y+z) = 9 

\(\Rightarrow\left(x+y+z\right)^2=9\)

\(\Rightarrow x+y+z=3\) hoặc x +y+z=-3

\(-\) TRƯỜNG HỢP  : x+y+z =3 :

 * từ (1) có :  x(x+y+z=3 ) = -5   và        x+y+z=3 => x = \(\frac{x\left(x+y+z\right)}{x+y+z}=-\frac{5}{3}\)

* từ (2) có : y(x+y+z) =9   và x+y+z=3 \(\Rightarrow y=\frac{y\left(x+y+z\right)}{x+y+z}=\frac{9}{3}=3\)

* từ (3) có : z(x+y+z) = 5 và x+y+z=3 \(\Rightarrow z=\frac{z\left(x+y+z\right)}{x+y+z}=\frac{5}{3}\)

\(-\) TRƯỜNG HỢP x +y+z=-3 :

* từ (1) có  x(x+y+z=3 ) = -5   và        x+y+z=-3 \(\Rightarrow x=\frac{x\left(x+y+z\right)}{x+y+z}=\frac{-5}{-3}=\frac{5}{3}\)

* từ (2) có : y(x+y+z) =9   và x+y+z=-3 \(\Rightarrow y=\frac{y\left(x+y+z\right)}{x+y+z}=\frac{9}{-3}=-3\)

 * từ (3) có : z(x+y+z) =5   và x+y+z=-3 \(\Rightarrow z=\frac{z\left(x+y+z\right)}{x+y+z}=\frac{5}{-3}\)

Đảm bảo đúng 100% . K MIK NHA MN!

15 tháng 8 2017

Đặt

\(x.\left(x+y+z\right)=-5\) (1)

\(y.\left(x+y+z\right)=9\)      (2)

\(x.\left(x+y+z\right)=5\)      (3)

Cộng (1);(2);(3) với nhau ta được 

\(x.\left(x+y+z\right)+y.\left(x+y+z\right)+z.\left(x+y+z\right)=\left(x+y+z\right).\left(x+y+z\right)\)

\(=\left(x+y+z\right)^2=\left(-5\right)+9+5=9=3^2=\left(-3\right)^2\)

Suy ra \(x+y+z=3\)hoặc \(x+y+z=-3\)

Thay \(x+y+z=3\)vào (1) ta được \(x.3=-5\Rightarrow x=-\frac{3}{5}\)

Thay\(x+y+z=3\)vào (2) ta được \(y.3=9\Rightarrow y=3\)

Thay \(x+y+z=3\)vào (3) ta được \(z.3=5\Rightarrow z=\frac{3}{5}\)

Ta có \(\left(x;y;z\right)=\left(-\frac{3}{5};3;\frac{3}{5}\right)\)

Thay \(x+y+z=-3\)vào (1) ta được \(x.\left(-3\right)=05\Rightarrow x=\frac{3}{5}\)

Thay \(x+y+z=-3\)vào (2) ta được \(y.\left(-3\right)=9\Rightarrow y=-3\)

Thay \(x+y+z=-3\)vào (3) ta được \(z.\left(-3\right)=5\Rightarrow x=-\frac{3}{5}\)

Ta có \(\left(x;y;z\right)=\left(\frac{3}{5};-3;-\frac{3}{5}\right)\)

Vậy các cặp \(\left(x;y;z\right)\)thỏa mãn là : \(\left(-\frac{3}{5};3;\frac{3}{5}\right)\)và \(\left(\frac{3}{5};-3;-\frac{3}{5}\right)\)

1 tháng 10 2019

1) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

                  \(\frac{x}{y}=\frac{17}{3}\) => \(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)

=> \(\hept{\begin{cases}\frac{x}{17}=-3\\\frac{y}{3}=-3\end{cases}}\) => \(\hept{\begin{cases}x=-51\\y=-9\end{cases}}\)

Vậy ....

2) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

           \(\frac{x}{19}=\frac{y}{21}\)=> \(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)

=> \(\hept{\begin{cases}\frac{x}{19}=2\\\frac{y}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=38\\y=42\end{cases}}\)

vậy ...

1 tháng 10 2019

3) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

       \(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=36\\y^2=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)

Vậy ...

4) Ta có: \(\frac{x}{y}=\frac{10}{9}\) => \(\frac{x}{10}=\frac{y}{9}\)

         \(\frac{y}{z}=\frac{3}{4}\) => \(\frac{y}{3}=\frac{z}{4}\) => \(\frac{y}{9}=\frac{z}{12}\)

=> \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

     \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)

=> \(\hept{\begin{cases}\frac{x}{10}=6\\\frac{y}{9}=6\\\frac{z}{12}=6\end{cases}}\) => \(\hept{\begin{cases}x=60\\y=54\\z=72\end{cases}}\)

Vậy ...

10 tháng 3 2020

- Ta có: \(x+y+z=0\)

      \(\Leftrightarrow x+y=-z\)

      \(\Leftrightarrow\left(x+y\right)^2=\left(-z\right)^2\)

      \(\Leftrightarrow x^2+y^2+2xy=z^2\)

      \(\Leftrightarrow x^2+y^2-z^2=-2xy\)

- CMT2\(y^2+z^2-x^2=-2yz\)

             \(z^2+x^2-y^2=-2zx\)

- Thay \(x^2+y^2-z^2=-2xy,\)\(y^2+z^2-x^2=-2yz,\)\(z^2+x^2-y^2=-2zx\)vào đa thức P

- Ta có: \(P=\frac{x^2}{-2yz}+\frac{y^2}{-2zx}+\frac{z^2}{-2xy}\)

     \(\Leftrightarrow P=\frac{x^3+y^3+z^3}{-2xyz}\)

- Đặt \(a=x^3+y^3+z^3\)

- Ta lại có: \(a=\left(x+y\right)^3+z^3-3xy.\left(x+y\right)\)

           \(\Leftrightarrow a=\left(x+y+z\right)^3-3.\left(x+y\right).z.\left(x+y+z\right)-3ab.\left(x+y\right)\)

- Mặt khác: \(x+y+z=0\)

            \(\Leftrightarrow x+y=-z\)

- Thay \(x+y+z=0,\)\(x+y=-z\)vào đa thức a

- Ta có: \(a=-3xy.\left(-z\right)=3xyz\)

- Thay \(a=3xyz\)vào đa thức P

- Ta có: \(P=\frac{3xyz}{-2xyz}=-\frac{3}{2}\)

Vậy \(P=-\frac{3}{2}\)

NM
23 tháng 10 2021

ta có :

undefined