K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2018

Xét \(x=0\)

Ta có: \(1+2017^y=2018^z\)

\(1+2017=2018\)

Nên \(x=0\); \(y=z=1\)

Xét x > 0, ta có:

\(2016\) tận cùng \(6\) nên \(2016^x\) luôn tận cùng bằng \(6\)

\(2017^y\) có tận cùng là \(7^y\) và là \(1,3,7,9\)

\(2018^z\) có tận cùng là \(2,4,6,8\)

\(\left[{}\begin{matrix}6+1=7\\6+3=9\\6+7=13\\6+9=15\end{matrix}\right.\)

Vế trái không có tận cùng bằng VP nên không thỏa mãn

Vậy pt có nghiệm duy nhất là \(\left(x,y,z\right)=\left(0;1;1\right)\)

23 tháng 10 2018

Đã gửi 09-12-2016 - 16:57

Vào lúc 08 Tháng 12 2016 - 17:26, ngocloan đã nói:

Tìm các số tự nhiên x,y thỏa mãn: 2016x+2017y=2018z

Giúp e vs mn ơi :wacko: :like

- Xét x = 0 Ta có 1 + 2017y = 2018z mà 1+2017 = 2018 Nên x = 0; y = z = 1 Xét x > 0

2016 tận cùng 6 nên 2016x luôn tận cùng 6

2017y có tận cùng là 7y và là 1, 7, 9, 3 2018z có tận cùng là 2, 4, 6, 8 Có 6 + 1= 7 6 + 3 = 9 6 + 7 = 13 6 + 9 = 15 Vế trái không có tận cùng bằng VP nên không thỏa mãn Vậy pt có nghiệm duy nhất là (x; y; z) = (0; 1; 1)
24 tháng 8 2017

vì (x-2016)^2016 >= 0 vs mọi x

    (y-2017)^2018>= 0 vs mọi y

    /x+y-z/ >= 0 vs mọi x,y,z

mà (x-2016)^2016+(y-2017)^2018+/x-y+z/=\(\hept{\begin{cases}\left(x-2016\right)^{2016}=0\\^{\left(-2017\right)^{2018}}=0\\x+y-z=0\end{cases}}\)0 nên ​\(\hept{\begin{cases}x-2016=0\\y-2017=0\\x+y-z\end{cases}}\)\(\hept{\begin{cases}x=2016\\y=2017\\x+y-z=0\end{cases}}\)

24 tháng 8 2017

mà x+y=2016+2017=4033

\(\Rightarrow\)4033-z=0

z=4033

vậy x=2016 y=2017 z=4033

13 tháng 2 2020

Tìm giá trị nhỏ nhất của biểu thức A = /x+1/ + /x-2017/ với x là số nguyên

10 tháng 10 2017

Sửa đề: 

\(\frac{x}{2016}=\frac{y}{2017}=\frac{z}{2018}=\frac{y-x}{1}=\frac{z-y}{1}=\frac{z-x}{2}\)

\(\Rightarrow x-z=2\left(x-y\right)=2\left(y-z\right)\)

\(\Rightarrow\left(x-z\right)^3=4\left(x-y\right)^2.2\left(y-z\right)=8\left(x-y\right)^2\left(y-z\right)\)

10 tháng 10 2017

cảm ơn bạn alibaba nguyễn

27 tháng 11 2018

Câu hỏi của Đỗ Minh Châu - Toán lớp 7 - Học toán với OnlineMat

Em có thể tham khảo tại link này nhé!