Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ : \(8x=9y\)\(\Rightarrow\)\(\frac{x}{9}=\frac{y}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta cí :
\(\frac{x}{9}=\frac{y}{8}=\frac{3x}{27}=\frac{2y}{16}=\frac{3x-2y}{27-16}=\frac{22}{11}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{9}=2\\\frac{y}{8}=2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=18\\y=16\end{cases}}\)
Ta có:\(\frac{x+1}{4}=\frac{2x-3}{5}=\frac{3x-2}{9y}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+1}{4}=\frac{2x-3}{5}=\frac{3x-2}{9y}=\frac{x+1+2x-3}{4+5}=\frac{3x-2}{9}\)
Vì \(\frac{3x-2}{9y}=\frac{3x-2}{9}\Rightarrow9y=9\Rightarrow y=1\)
\(\Rightarrow\frac{x+1}{4}=\frac{3x-2}{9}\)
\(\Rightarrow9x+9=12x-8\)
\(9x-12x=-8-9\)
\(-3x=-17\)
\(x=\frac{17}{3}\)
Có 2 TH
\(TH1:3x>y\)
\(\Rightarrow xy+3x-y=6\)
\(\Rightarrow x\left(y+3\right)-y-3=6-3=3\)
\(\Rightarrow\left(x-1\right)\left(y+3\right)=3\)
Ta có bảng sau :
x-1 | 1 | 3 | -1 | -3 |
y+3 | 3 | 1 | -3 | -1 |
x | 2 | 4 | 0 | -2 |
y | 0 | -2 | -6 | -4 |
Vậy có các cặp (x;y)=(2;0);(4;-2);(0;-6);(-2;-4)
\(TH2:3x< y\)
\(\Rightarrow xy+y-3x=6\)
\(\Rightarrow x\left(y-3\right)+y=6\)
\(\Rightarrow\left(x+1\right)\left(y-3\right)=3\)
Ta có bảng sau :
x+1 | 1 | 3 | -1 | -3 |
y-3 | 3 | 1 | -3 | -1 |
x | 0 | 2 | -2 | -4 |
y | 6 | 4 | 0 | 2 |
Vậy ta có các cặp (x;y)=(0;6);(2;4);(-2;0);(-4;2)
\(TH1:x\ge\frac{y}{3}\) PT có dạng : \(xy+3x-y=6\)
\(\Leftrightarrow x\left(y+3\right)-\left(y+3\right)=3\Leftrightarrow\left(x-1\right)\left(y+3\right)=3\)
Lập bảng hoặc xét từng giá trị ta được \(\left(x;y\right)=\left\{\left(2;0\right);\left(0;-6\right);\left(4;-2\right)\right\}\)
\(TH2:x< \frac{y}{3}\) Tương tự
x=1;y=20