K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2016

chiu roi

ban oi

tk nhe@@@@@@@@@@

ai tk minh minh tk lai!!

23 tháng 10 2016

mik k cho bạn 1 cái

AH
Akai Haruma
Giáo viên
20 tháng 4 2020

Lời giải:

$z^2+2x^2+6xy+20+4z+9y^2-8x=0$

$\Leftrightarrow (z^2+4z+4)+(x^2+6xy+9y^2)+(x^2-8x+16)=0$

$\Leftrightarrow (z+2)^2+(x+3y)^2+(x-4)^2=0$

Vì $(z+2)^2\geq 0; (x+3y)^2\geq 0; (x-4)^2\geq 0$ với mọi $x,y,z\in\mathbb{R}$

Do đó để tổng của chúng bằng $0$ thì $(z+2)^2=(x+3y)^2=(x-4)^2=0$

\(\Rightarrow \left\{\begin{matrix} z+2=0\\ x+3y=0\\ x-4=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} z=-2\\ x=4\\ y=\frac{-4}{3}\end{matrix}\right.\)