K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
28 tháng 3 2021

\(2x-3y+6xy=5\)

\(\Leftrightarrow\left(1+3y\right)\left(-1+2x\right)=4\)

Vì \(-1+2x\)là số lẻ nên ta xét bảng: 

1+3y4-4
-1+2x1-1
y1-5/3 (loại)
x1 

Vậy \(\left(x,y\right)=\left(1,1\right)\).

28 tháng 3 2021

\(Ta có: 2x+6xy-3y\)

\(2x(1+3y)-3y\)

\(2x(1+3y)-1-3y=4\)

\(2x(1+3y)-(1+3y)=4\)

\(=> (2x-1)(1+3y)=4 =2.2 = (-2)(-2) = 1.4 = (-1)(4)\)

TH1: \(\orbr{\begin{cases}2x-1=2\\1+3y=2\end{cases}=>\orbr{\begin{cases}2x=3\\3y=1\end{cases}=>\orbr{\begin{cases}x=\frac{3}{2}\\y=\frac{1}{3}\end{cases}}}}\left(loai\right)\)(do x,y là số nguyên)

Những trường hợp còn lại bạn làm nhé.

8 tháng 10 2015

x:y=5:6

=>x/y=5/6

=>x/5=y/6

=>2x/10=3y/18=(2x+3y)/(10+18)=56/28=2 (tính chất dãy tỉ số = nhau)

2x/10=2

=>x/5=2=>x=10

3y/18=2

=>y/6=2=>y=12

vậy x=10 và y=12

26 tháng 6 2023

6xy+4x-3y=8
=> 6xy -3y=8-4x
=>3y(2x-1)= -2(2x-1) +6
=>(2x-1)(3y+2)=6
mà x,y thuộc Z =>(2x-1),(3y+2)  thuộc Z =>(2x-1),(3y+2) thuộc U(6)   xong giải ra bình thường nhé mấy câu sau tương tự 
 

26 tháng 6 2023

chị giải nốt cho em phần a với ạ

 

13 tháng 7 2017

Bài 1:
a) (2x - y) + (2x - y) + (2x - y) + 3y
= 3(2x - y) + 3y
= 3(2x - y + 3y)
= 3(2x + 2y)
= 3.2(x + y)
= 6(x + y)

b) (x + 2y) + (x - 2y) + (8x - 3y)
= x + 2y + x - 2y + 8x - 3y
= 9x - 3y
= 3(3x - y)

c) (x + 2y) - 2(x - 2y) - (2x - 3y)
= x + 2y - 2x + 4y - 2x + 3y
= 9y - 3x
= 3(3y - x)

Bài 2:
M + 2(x2 - 4y2) + Q = 6x2 - 4xy + 5y2 + P
M + 2x2 - 8y2   -3x2 + 7xy - 2y2 = 6x2 - 4xy + 5y2 + 9x2 - 6xy + 3y2
M + 2x2 - 3x2 - 6x2 - 9x2 - 8y2 - 2y2 - 5y2 - 3y2 + 7xy + 4xy + 6xy = 0
M - 16x2 - 18y2 + 17xy = 0
M = 16x2 + 18y2 - 17xy

25 tháng 6 2023

a, (3 - \(x\))(4y + 1) = 20

   Ư(20) = { -20; -10; -5; -4; -2; -1; 1; 2; 4; 5; 10; 20}

Lập bảng ta có:

\(3-x\) -20 -10 -5 -4 -2 -1 1 2 4 5 10 20
\(x\) 23  13 8 7 5 4 2 1 -1 -2 -7 -17
4\(y\) + 1 -1 -2 -4 -5 -10 -20 20 10 5 4 2 1
\(y\) -1/2 -3/4 -5/4 -6/4 -11/4 -21/4 19/4 9/4 1 3/4 1/4 0

Vậy các cặp \(x;y\) nguyên thỏa mãn đề bài là:

(\(x;y\)) =(-1; 1); (-17; 0)

 

 

25 tháng 6 2023

b, \(x\left(y+2\right)\)+ 2\(y\) = 6

    \(x\) = \(\dfrac{6-2y}{y+2}\)

\(x\in\) Z ⇔ 6 - \(2y⋮\) \(y\) + 2 ⇒-(2y + 4) +10 ⋮ \(y\) + 2 ⇒ -2(\(y\)+2) +10 ⋮ \(y\)+2

⇒ 10 ⋮ \(y\) + 2

Ư(10) = { -10; -5; -2; -1; 1; 2; 5; 10}

Lập bảng ta có:

\(y+2\) -10 -5 -2 -1 1 2 5 10
\(y\) -12 -7 -4 -3 -1 0 3 8
\(x=\) \(\dfrac{6-2y}{y+2}\) -3 -4 -7 -12 8 3 0 -1

 Theo bảng trên ta có các cặp \(x;y\)

 nguyên thỏa mãn đề bài lần lượt là:

(\(x;y\)    ) =(-3; -12); (-4; -7); (-12; -3); (8; -1); (3; 0); (0;3 (-1; 8)