Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)
Vì \(\left(3x-1\right)^{2018}\ge0\forall x\)
\(\left(y+\frac{3}{5}\right)^{2020}\ge0\forall y\)
\(\Rightarrow\left(3x-1\right)^{2018}+\left(y+\frac{3}{5}\right)^{2020}\ge0\forall x;y\)
Để thỏa mãn đ/b => \(\left(3x-1\right)^{2018}=0\Leftrightarrow x=\frac{1}{3}\) và \(\left(y+\frac{3}{5}\right)^{2020}=0\Leftrightarrow y=\frac{-3}{5}\)
Vậy....
a)Ta có : \(3x-y+xy=8=>3\left(x-1\right)+y\left(x-1\right)=5=>\left(3+y\right)\left(x-1\right)=5\)
Đến đây lập bảng là ra .
b)Ta có : \(\left(3x-1\right)^{2018}+\left(y+\frac{3}{5}\right)^{2020}=0\)
Lại có : \(\left(3x-1\right)^{2018}\ge0;\left(y+\frac{3}{5}\right)^{2020}\ge0=>\left(3x-1\right)^{2018}+\left(y+\frac{3}{5}\right)^{2020}\ge0\)
\(=>\hept{\begin{cases}3x-1=0\\y+\frac{3}{5}=0\end{cases}}=>\hept{\begin{cases}x=\frac{1}{3}\\y=-\frac{3}{5}\end{cases}}\)
<=> x+y+2=xy
<=> y+2=xy-x
<=> y+2=x(y-1)
<=> x= (y+2)/(y-1)=(y-1+3)/(y-1)= 1+ 3/(y-1)
Vậy, để x nguyên thì y-1 phải là ước của 3
=> y-1={-3; -1; 1; 3}
=> y={-2; 0; 2; 4}
=> x={0; -2; 4; 2}
Do x, y khác 0 nên các cặp x, y thỏa mãn là (4; 2) và (2; 4)
A=\(\left[\frac{x\left(x-y\right)}{y\left(x+y\right)}+\frac{\left(x-y\right)\left(x+y\right)}{x\left(x+y\right)}\right]:\left[\frac{y^2}{x\left(x-y\right)\left(x+y\right)}+\frac{1}{x+y}\right]\frac{ }{ }\)
=\(\left[\frac{x^2\left(x-y\right)+y\left(x-y\right)\left(x+y\right)}{xy\left(x+y\right)}\right]:\left[\frac{y^2+x\left(x-y\right)}{x\left(x-y\right)\left(x+y\right)}\right]\)=\(\frac{\left(x-y\right)\left(x^2+y^2+xy\right)}{xy\left(x+y\right)}.\frac{x\left(x-y\right)\left(x+y\right)}{y^2+x\left(x-y\right)}\)
=\(\frac{\left(x-y\right)^2\left(x^2+y^2+xy\right)}{y\left(x^2+y^2-xy\right)}\)=\(\frac{\left(x-y\right)^2\left(x^2+xy+\frac{y^2}{4}+\frac{3y^2}{4}\right)}{y\left(x^2-xy+\frac{y^2}{4}+\frac{3y^2}{4}\right)}\)=\(\frac{\left(x-y\right)^2\left[\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}\right]}{y.\left[\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4}\right]}\)
Ta nhận thấy các số trong ngoặc đều dương.
=> Để A>0 thì y>0
Vậy để A>0 thì y>0 và với mọi x
a)
Ta có: \(\frac{x+y}{2014}\ne\frac{x-y}{2016}\)
\(\Leftrightarrow2016x+2016y=2014x-2014y\)
\(\Leftrightarrow2x=-4030y\)
\(\Leftrightarrow x=-2015y\)
Thay \(x=-2015y\)vào \(\frac{x+y}{2014}=\frac{xy}{2015}\)ta được:
\(\Leftrightarrow\frac{-2015+y}{2014}=\frac{-2015y}{2015}\)
\(\Leftrightarrow\frac{-2014y}{2014}=\frac{-2015y^2}{2015}\)
\(\Leftrightarrow-y=-y^2\)
\(\Leftrightarrow y-y^2=0\)
\(\Leftrightarrow y\left(1-y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y=0\\1-y=0\end{cases}}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}\)
Trường hợp \(y=0\):
\(y=0\Rightarrow x.y=-2015.0=0\)
Trường hợp \(y=1\):
\(y=1\Rightarrow x.y=-2015.1=-2015\)
a, xy+2x-y=5
=> x(y+2)-y-2=3
=>x(y+2)-(y+2)=3
=>(x-1)(y+2)=3
=>\(\hept{\begin{cases}x-1=3\Rightarrow x=4\\y+2=1\Rightarrow y=-1\end{cases}}\); \(\hept{\begin{cases}x-1=1\Rightarrow x=2\\y+2=3\Rightarrow y=1\end{cases}}\)
=>\(\hept{\begin{cases}x-1=-1\Rightarrow x=0\\y+2=-3\Rightarrow y=-5\end{cases}}\); \(\hept{\begin{cases}x-1=-3\Rightarrow x=-2\\y+2=-1\Rightarrow y=-3\end{cases}}\)
vậy (x;y)\(\in\)(4,-1);(2,1);(0,-5);(-2.-3)
từ\(\frac{2bz-3cy}{a}\)=\(\frac{3cx-az}{2b}=\frac{ay-2bx}{3c}\)
=>\(\frac{2abz-3acy}{a}\)=\(\frac{6bcx-2abz}{2b}\)=\(\frac{3cay-6cbx}{3c}\)
=\(\frac{2abz-3acy+6bcx-2abz+3cay-6cbx}{2a+4b+6c}\)=0
=>\(\frac{2bz-3cy}{a}=0\)=>2bz=3cy=>\(\frac{z}{3c}\)=\(\frac{y}{2b}\)(1)
=>\(\frac{3cx-az}{2b}\)=0 =>3cx=az =>\(\frac{x}{a}\)=\(\frac{z}{3c}\)(2)
=>\(\frac{ay-2bx}{3c}=0\)=>ay=2bx =>\(\frac{y}{2b}\)=\(\frac{x}{a}\)(3)
Từ (1),(2) và (3) suy ra\(\frac{x}{a}=\frac{y}{2b}=\frac{z}{3c}\)đpcm