K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: (x-3)(4-x)>0

=>(x-3)(x-4)<0

=>3<x<4

c: =>(x-3)(x-4)<0

=>3<x<4

d: \(\Leftrightarrow3x^2+3x+5x+5>0\)

\(\Leftrightarrow\left(x+1\right)\left(3x+5\right)>0\)

=>x<-5/3 hoặc x>-1

30 tháng 1 2018

      \(\left(x-3\right)\left(4-x\right)>0\)

\(\Rightarrow\)\(\hept{\begin{cases}x-3>0\\4-x>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x>3\\x< 4\end{cases}}\)  (vô lí)

hoặc    \(\hept{\begin{cases}x-3< 0\\4-x< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< 3\\x>4\end{cases}}\)(vô lí)

Vậy      \(x=\Phi\)

8 tháng 12 2022

a

31 tháng 7 2023

|5\(x\) - 4| = |\(x+2\)|

\(\left[{}\begin{matrix}5x-4=x+2\\5x-4=-x-2\end{matrix}\right.\)

\(\left[{}\begin{matrix}4x=6\\6x=2\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)

vậy \(x\in\) { \(\dfrac{1}{3};\dfrac{3}{2}\)}

31 tháng 7 2023

|2\(x\) - 3| - |3\(x\) + 2| = 0

|2\(x\) - 3| = | 3\(x\) + 2|

\(\left[{}\begin{matrix}2x-3=3x+2\\2x-3=-3x-2\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=-5\\x=\dfrac{1}{5}\end{matrix}\right.\)

vậy \(x\in\){ -5; \(\dfrac{1}{5}\)}

 

 

AH
Akai Haruma
Giáo viên
12 tháng 7 2021

Lời giải:

1.

$|4-x|\geq 0$ với mọi $x$

$|2y+1|\geq 0$ với mọi $y$

Do đó để $|4-x|+|2y+1|=0$ thì $|4-x|=|2y+1|=0$

$\Leftrightarrow x=4; y=\frac{-1}{2}$

2.

$|x-3|=|5-2x|$

$\Leftrightarrow x-3=5-2x$ hoặc $x-3=2x-5$

$\Leftrightarrow x=\frac{8}{3}$ hoặc $x=2$

12 tháng 7 2021

 1 )  | 4 - x | + | 2y +1 | = 0  

Trường hợp 1Trường hợp 2
x+1=02y-4=0
x=0-12y=0+4
x=-12y=2=>y=2

 

24 tháng 9 2018

a,Vì: \(\left(x-1\right)^2\ge0\forall x\)

\(\left(2y-5\right)^4\ge0\forall y\)

\(\Rightarrow\left(x-1\right)^2+\left(2y-5\right)^2\ge0\forall x,y\)

Dấu = xảy ra khi: \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(2y-5\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{5}{2}\end{cases}}}\)

=.= hok tốt!!

24 tháng 9 2018

b, Vì: \(\left(2x+3\right)^2\ge0\forall x\)

\(\left(x+2y-3\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(2x+3\right)^2+\left(x+2y-3\right)^2\ge0\forall x,y\)

Mà: \(\left(2x+3\right)^2+\left(x+2y-3\right)^2< 0\)

=> Ko có giá trị của x , y thỏa mãn

=.= hok tốt!!

12 tháng 10 2017

mấy cái kia cũng làm giống vậy

12 tháng 10 2017

1)\(x^2-x=x\left(x-1\right)=0\)

\(\orbr{\begin{cases}x=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)