K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{5}=\frac{y}{9}=\frac{3x}{3.5}=\frac{2y}{2.9}=\frac{3x-2y}{15-18}=\frac{12}{-3}=-4\)

\(\frac{x}{5}=-4\Rightarrow x=\left(-4\right).5=-20\)

\(\frac{y}{9}=-4\Rightarrow y=\left(-4\right).9=-36\)

Vậy x=-20 và y=-36

10 tháng 12 2017

\(\frac{x}{5}=\frac{y}{9}\Leftrightarrow\frac{3x}{15}=\frac{2y}{18}=\frac{3x-2y}{15-18}=\frac{12}{-3}=-4\)

\(\Rightarrow x=-20,y=-36\)

22 tháng 7 2019

a) Ta có: \(\frac{x}{5}=\frac{y}{6}\) =>  \(\frac{x}{20}=\frac{y}{24}\) 

        \(\frac{y}{8}=\frac{z}{11}\) => \(\frac{y}{24}=\frac{z}{33}\)

=> \(\frac{x}{20}=\frac{y}{24}=\frac{z}{33}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

     \(\frac{x}{20}=\frac{y}{24}=\frac{z}{33}=\frac{x+y-z}{20+24-33}=\frac{44}{11}=4\)

=> \(\hept{\begin{cases}\frac{x}{20}=4\\\frac{y}{24}=4\\\frac{z}{33}=4\end{cases}}\) =>  \(\hept{\begin{cases}x=4.20=80\\y=4.24=96\\z=4.33=132\end{cases}}\)

Vậy ...

b) Ta có: 3x = 8y => x/8 = y/3 => x/8 = 2y/6

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

         \(\frac{x}{8}=\frac{2y}{6}=\frac{x-2y}{8-6}=\frac{4}{2}=2\)

=> \(\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{3}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.8=16\\y=2.3=6\end{cases}}\)

Vậy ...

22 tháng 7 2019

Ta có : \(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}=>\frac{x}{20}=\frac{y}{24}\\\frac{y}{8}=\frac{z}{11}=>\frac{y}{24}=\frac{z}{33}\end{cases}=>\frac{x}{20}=\frac{y}{24}=\frac{z}{33}}\)

Đến đây áp dụng tính chất dãy tỉ số bằng nhau là ra . Mình chỉ hướng làm thôi chứ ko giải hết đâu nha . Đến đây tự giải ra nha .

b)Ta có : \(3x=8y=>\frac{x}{8}=\frac{y}{3}=\frac{2y}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau tự làm tiếp nha 

Hok tốt

29 tháng 10 2017

a) x/5=y/2

= x+y/5+2=21/7=3

=> x/5=3=>x=15

    y/2=3=>x=6

29 tháng 10 2017

1) a) => \(\frac{x}{2}=\frac{y}{5}vàx+y=21\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)

\(\frac{x}{2}=3\Rightarrow x=2\cdot3=6\)

\(\frac{y}{5}=3\Rightarrow y=3\cdot5=15\)

c) =.> \(\frac{x}{7}=\frac{y}{5}vày-x=12\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{12}{-2}=-6\)

*\(\frac{x}{7}=-6\Rightarrow x=-6\cdot7=-42\)

*\(\frac{y}{5}=-6\Rightarrow y=-6\cdot5=-30\)

11 tháng 7 2019

\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)

\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)

\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chát dãy tỉ số = nhau ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)

\(\frac{y}{15}=2\Rightarrow y=30\)

\(\frac{z}{21}=3\Rightarrow z=63\)

11 tháng 7 2019

b, Tự làm

c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)

\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)

\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)

\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)

\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)

\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)

\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)

\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)

\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)

Vậy \((x,y)\in(6,15);(-6,-15)\)

17 tháng 12 2017

theo TCDTSBN ta có :

\(\frac{x}{5}=\frac{y}{7}=\frac{3x}{3.5}=\frac{2y}{2.7}=\frac{3x-2y}{15-14}=\frac{-21}{1}=-21\)

\(\frac{x}{5}=-21\Rightarrow x=-21.5=-105\)

\(\frac{y}{7}=-21\Rightarrow y=-21.7=-147\)

Vậy ...

14 tháng 3

1 tháng 12 2016

a)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

=> x2=4.9=36 => x=\(\pm6\)

y2=4.16=64 => y\(\pm8\)

\(\frac{x^2}{9}=\frac{y^2}{16}\) nên x và y cùng dấu

Vậy (x;y) thõ mãn là (6;8);(-6;-8)

b)

Theo bài ra ta có: 3x=2y => \(\frac{x}{2}=\frac{y}{3}\) =>\(\frac{x}{10}=\frac{y}{15}\) (1)

2y=5z => \(\frac{y}{5}=\frac{z}{2}\Rightarrow\frac{y}{15}=\frac{z}{6}\) (2)

Từ (1) và (2) => \(\frac{x}{10}=\frac{y}{15}=\frac{z}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{6}=\frac{x+y+z}{10+15+6}=\frac{-62}{31}=-2\)

=> x=(-2).10=-20

y=(-2).15=-30

z=(-2).6=-12

Vậy x=-20; y=-30; z=-12

1 tháng 12 2016

kia 2 câu a,b à hay là 1 câu thế

 

24 tháng 7 2016

\(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{3x}{6}=\frac{2y}{10}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{3x}{6}=\frac{2y}{10}=\frac{3x+2y}{6+10}=\frac{15}{16}\)

\(\frac{3x}{6}=\frac{15}{16}\Rightarrow x=\frac{15}{8}\)

\(\frac{2y}{10}=\frac{15}{16}\Rightarrow y=\frac{75}{16}\)

Chúc bạn học tốt ^^

 

 

19 tháng 5 2017

\(\frac{3x-2y}{5}=\frac{2z-5x}{3}=\frac{5y-3z}{2}=\frac{15x-10y}{25}=\frac{6z-15x}{9}=\frac{10y-6z}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{3x-2y}{5}=\frac{2z-5x}{3}=\frac{5y-3z}{2}=\frac{15x-10y}{25}=\frac{6z-15x}{9}=\frac{10y-6z}{4}\)

\(=\frac{15x-10y+6z-15x+10y-6z}{25+9+4}=0\)

=>3x-2y=2z-5x=5y-3z=0

  • 3x-2y=0 => 3x=2y => x/2=y/3
  • 2z-5x=0 => 2z=5x => z/5=x/2

=>\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{50}{10}=5\)

=>x=10;y=15;z=25