Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=-x^2+6x+1=-\left(x^2-6x+9\right)+10=-\left(x-3\right)^2+10\le10\)Vậy \(Max_P=10\) khi \(x-3=0\Rightarrow x=3\)
b, \(P=-x^2+6x+1=-\left(x^2-6x-1\right)\)
\(=-\left(x^2-3x-3x+9-10\right)\)
\(=-\left[\left(x-3\right)^2-10\right]\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2-10\ge-10\)
\(\Rightarrow-\left[\left(x-3\right)^2-10\right]\ge10\)
Hay \(P\ge10\) với mọi giá trị của \(x\in R\).
Để \(P=10\) thì \(-\left[\left(x-3\right)^2-10\right]=10\)
\(\Rightarrow\left(x-3\right)^2=0\Rightarrow x=3\)
Vậy.....
Chúc bạn học tốt!!!
x2+y2+$\frac{1}{x^2}+\frac{1}{y^2}$1x2 +1y2 =4
<=> \(x^2-2+\frac{1}{x^2}+y^2-2+\frac{1}{y^2}=0\)
<=>\(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2=0\)
=> \(x=\frac{1}{x}\) và \(y=\frac{1}{y}\)
=> \(x=1;-1\) và \(y=1;-1\)
Ta có x^2+6x=y^2
x^2+6x+9 =y^2+9
(x+3)^2+9=y^2
y^2-(x+3)^2 =9
(y+x+3)(y-x-3)=9
Lập bảng xét các trường hợp ra
Ta có:\(x^2+6x=y^2\)
\(\Leftrightarrow x^2+6x+9=y^2+9\)
\(\Leftrightarrow\left(x+3\right)^2=y^2+9\)
Do VT là số chính phương nên VP là số chính phương
Đặt \(y^2+9=k^2\left(k\in Z\right)\)
Khi đó ta có:
\(y^2-k^2=-9\)
\(\Leftrightarrow\left(y-k\right)\left(y+k\right)=-9=\left(-3\right)\cdot3=3\cdot\left(-3\right)=\left(-1\right)\cdot9=\left(-9\right)\cdot1\)
Với \(\left(y-k\right)\left(y+k\right)=\left(-3\right)\cdot3\)
\(\Rightarrow\hept{\begin{cases}y-k=-3\\y+k=3\end{cases}}\)
\(\Rightarrow2y=0\)
\(\Rightarrow y=0\)
Thay y=0 vào ta được x=0 hoặc x=6
Làm tương tự các trường hợp còn lại ta thu được các nghiệm (x;y) của pt là:
\(\left(-8;-4\right);\left(-8;4\right);\left(2;4\right);\left(2;-4\right);\left(-6;0\right);\left(0;0\right)\)
Ta có: \(28\left(x-1\right)^2\)chẵn mà 37 lẻ nên \(y^2\)lẻ
Mà \(y^2\)là số chính phương và \(y^2\le37\)nên \(y^2\in\left\{1;9;25\right\}\)
\(TH1:y^2=1\Rightarrow\left(x-1\right)^2=\frac{36}{28}\left(L\right)\)
\(TH2:y^2=9\Rightarrow\left(x-1\right)^2=1\Rightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)
\(TH3:y^2=25\Rightarrow\left(x-1\right)^2=12\left(L\right)\)