Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có vô số cặp (x; y) thỏa mãn\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Ví dụ : x = 2 ; y = 3 ; z = 6
x = 3 ; y = 2 ; z = 6
x = 2 ; y = 6 ; z = 3
.......
Ghi sai đề rồi, phải thay tìm x,y biết bằng từ cho
\(A=\frac{xyz}{z^3}+\frac{xyz}{x^3}+\frac{xyz}{y^3}=xyz\left(\frac{1}{z^3}+\frac{1}{x^3}+\frac{1}{y^3}\right)\)
Ta có \(a+b+c=0=>a^3+b^3+c^3=3abc\)
Mặt khác \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0=>\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)
=> A= \(xyz.\frac{3}{xyz}\)
=3
\(P=-x^2+6x+1=-\left(x^2-6x+9\right)+10=-\left(x-3\right)^2+10\le10\)Vậy \(Max_P=10\) khi \(x-3=0\Rightarrow x=3\)
b, \(P=-x^2+6x+1=-\left(x^2-6x-1\right)\)
\(=-\left(x^2-3x-3x+9-10\right)\)
\(=-\left[\left(x-3\right)^2-10\right]\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2-10\ge-10\)
\(\Rightarrow-\left[\left(x-3\right)^2-10\right]\ge10\)
Hay \(P\ge10\) với mọi giá trị của \(x\in R\).
Để \(P=10\) thì \(-\left[\left(x-3\right)^2-10\right]=10\)
\(\Rightarrow\left(x-3\right)^2=0\Rightarrow x=3\)
Vậy.....
Chúc bạn học tốt!!!
z ở đâu hả bạn ?