Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x^2-9\right)=27\\ x.x^2-x.3x+x.9-x.x^2+x.9=27\\ x^3-3x^2+9x-x^3+9x=27\\ 3x^2+18x=27\\ 21x^2=27\\ x^2=\dfrac{9}{7}\\ \Rightarrow x=\sqrt{\dfrac{9}{7}}\)
(x + 3)(x2 - 3x + 9) - x(x - 2)2 = 27
\(\Leftrightarrow\) x3 + 27 - x( x2 - 4x + 4) = 27
\(\Leftrightarrow\) x3 + 27 - x3 + 4x2 - 4x - 27 = 0
\(\Leftrightarrow\) 4x2 - 4x = 0
\(\Leftrightarrow\) 4x ( x - 1) = 0
khi 4x = 0 hoặc x - 1 = 0
\(\Leftrightarrow\) x = 0 \(\Leftrightarrow\) x = 1
Chúc bạn học tốt
\(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)^2=27\\ x.x^2-x.3x+x.9+3.x^2-3.3x+3.9-x.x^2+x.2^2=27\\ x^3-3x^2+9x+3x^2-9x+27-x^3+4x=27\\ 4x+27=27\\ 4x=0\\ x=0\)
\(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-3\end{matrix}\right.\)
\(a,\Leftrightarrow\left(x-2\right)^3-3x\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x-2-3x\right)=0\\ \Leftrightarrow\left(x-2\right)\left(-2x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\\ b,\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\\ \Leftrightarrow x\left(x-2\right)\left(x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-3\end{matrix}\right.\)
( x - 2 )( x + 2 ) - ( x + 3 )( x2 - 3x + 9 ) = 6x - 27
<=> x2 - 4 - ( x3 + 27 ) = 6x - 27
<=> x2 - 4 - x3 - 27 = 6x - 27
<=> x2 - 4 - x3 - 27 - 6x + 27 = 0
<=> -x3 + x2 - 6x - 4 = 0
Gồi đến đây là chịu :)
a) \(4x^3-36x=0\)
\(\Leftrightarrow4x\left(x^2-9\right)=0\)
\(\Leftrightarrow4x\left(x+3\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=0\\x+3=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=3\end{matrix}\right.\)
b) \(\left(x-2\right)^2-4x+8=0\)
\(\Leftrightarrow\left(x-2\right)^2-\left(4x-8\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
c) \(x^3+\left(x+3\right)\left(x-9\right)=-27\)
\(\Leftrightarrow\left(x^3+27\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=2\end{matrix}\right.\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x-3\right)\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-2x+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\\left(x-1\right)^2+5=0\left(vô.lí\right)\end{matrix}\right.\\ \Leftrightarrow x=-3\)
\(x^3+27=-x^2+9\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-2x+6\right)=0\)
hay x=-3