Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C= x^6+27/x^4 - 3x^3 +6x^2 -9x + 9
= (x^2+3)(x^4-3x^2+9)/(x^4+3x^2)-(3x^3+9x)+(3x^2+9)
=(x^2+3)(x^4+6x^2+9-9x^2)/(x^2+3x)(x^2-3x+3)
= (x^2+3+3x)(x^2+3-3x)/x^2+3-3x =x^2+3x+3
=(x^2+3x+9/4) -9/4+3 = (x+3/2)^2 +3/4 >= 3/4
Dấu = xảy ra khi x=-3/2
Vậy Cmin = 3/4 <=> x=-3/2
\(A=\dfrac{3x^2-6x+17}{x^2-2x+5}\)
= \(\dfrac{3x^2-6x+15+2}{x^2-2x+5}\)
=\(\dfrac{3\left(x^2-2x+5\right)+2}{x^2-2x+5}\)
= \(\dfrac{3\cdot\left(x^2-2x+5\right)}{x^2-2x+5}+\dfrac{2}{x^2-2x+5}\)
= \(3+\dfrac{2}{x^2-2x+5}\)
= \(3+\dfrac{2}{x^2-2x+1+4}\)
= \(3+\dfrac{2}{\left(x-1\right)^2+4}\)
vì (x-1)2 ≥ 0 ∀ x
⇔ (x-1)2 +4 ≥ 4
⇔\(\dfrac{2}{\left(x-1\right)^2+4}\le\dfrac{1}{2}\)
⇔\(3+\dfrac{2}{\left(x-1\right)^2+4}\le\dfrac{7}{2}\)
⇔ A \(\le\dfrac{7}{2}\)
⇔ Min A =\(\dfrac{7}{2}\)
khi x-1=0
⇔ x=1
vậy ....
Ta có:\(B=\dfrac{2x^2-16x+41}{x^2-8x+22}\)
\(B=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}\)
\(B=2-\dfrac{3}{x^2-8x+16+6}\)
\(B=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{5}{2}\)
\(\Rightarrow MINB=\dfrac{5}{2}\Leftrightarrow x=4\)
Bài 1: Tìm x
a) Ta có: \(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)
\(\Leftrightarrow4x^2+4x+1-4\left(x^2+4x+4\right)-9=0\)
\(\Leftrightarrow4x^2+4x+1-4x^2-16x-16-9=0\)
\(\Leftrightarrow-12x-24=0\)
\(\Leftrightarrow-12x=24\)
hay x=-2
Vậy: x=-2
b) Ta có: \(\left(3x-1\right)^2+2\left(x+3\right)^2+11\left(x+1\right)\left(1-x\right)=6\)
\(\Leftrightarrow9x^2-6x+1+2\left(x^2+6x+9\right)-11\left(x-1\right)\left(x+1\right)-6=0\)
\(\Leftrightarrow9x^2-6x+1+2x^2+12x+18-11\left(x^2-1\right)-6=0\)
\(\Leftrightarrow11x^2+6x+12-11x^2+11=0\)
\(\Leftrightarrow6x+23=0\)
\(\Leftrightarrow6x=-23\)
hay \(x=-\frac{23}{6}\)
Vậy: \(x=-\frac{23}{6}\)
c) Ta có: \(8x^3-12x^2+6x-1=0\)
\(\Leftrightarrow\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3=0\)
\(\Leftrightarrow\left(2x-1\right)^3=0\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
hay \(x=\frac{1}{2}\)
Vậy: \(x=\frac{1}{2}\)
d) Ta có: \(x^3+9x^2+27x+27=0\)
\(\Leftrightarrow x^3+3\cdot x^2\cdot3+3\cdot x\cdot3^2+3^3=0\)
\(\Leftrightarrow\left(x+3\right)^3=0\)
\(\Leftrightarrow x+3=0\)
hay x=-3
Vậy: x=-3
a) (2x + 1)2 - 4(x + 2)2 = 9
4x2 + 4x + 1 - 4(x2 + 4x + 4) = 9
4x2 + 4x + 1 - 4x2 - 16x - 16 = 9
-12x - 15 = 9
-12x = 9 + 15
-12x = 24
x = 12 : (-2)
x = -2
b) (3x - 1)2 + 2(x + 3)2 + 11(x + 1)(1 - x) = 6
9x2 - 6x + 1 + 2(x2 + 6x + 9) - 11(x + 1)(x - 1) = 6
9x2 - 6x + 1 + 2x2 + 12x + 18 - 11(x2 - 1) = 6
9x2 - 6x + 1 + 2x2 + 12x + 18 - 11x2 + 11 = 6
6x + 30 = 6
6x = 6 - 30
6x = -24
x = -24 : 6
x = -4
c) 8x3 - 12x2 + 6x - 1 = 0
(2x)3 - 3.(2x)2.1 + 3.2x.12 - 13 = 0
(2x - 1)3 = 0
2x - 1 = 0
2x = 1
x = 1/2
d) x3 + 9x2 + 27x + 27 = 0
x3 + 3.x2.3 + 3.x.32 + 33 = 0
(x + 3)3 = 0
x + 3 = 0
x = 0 - 3
x = -3
1) \(\dfrac{1}{27}+a^3=\left(\dfrac{1}{3}+a\right)\left(\dfrac{1}{9}-\dfrac{a}{3}+a^2\right)\)
2) \(=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)
3) \(=\left(\dfrac{1}{2}x+2y\right)\left(\dfrac{1}{4}x-xy+4y^2\right)\)
4) \(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)
5) \(=\left(x^3+1\right)\left(x^6-x^3+1\right)\)
6) \(=\left(x-4\right)\left(x^2+4x+16\right)\)
7) \(=\left(x-5\right)\left(x^2+5x+25\right)\)
8) \(=\left(2x^2-3y\right)\left(4x^4+6x^2y+9y^2\right)\)
9) \(=\left(\dfrac{1}{4}x^2-5y\right)\left(\dfrac{1}{16}x^4+\dfrac{5}{4}x^2y+25y^2\right)\)
10) \(=\left(\dfrac{1}{2}x-2\right)\left(\dfrac{1}{4}x^2+x+4\right)\)
11) \(=\left(x+2\right)^3\)
12) \(=\left(x+3\right)^3\)
một đòn bẫy dài một mét .đặt ở đâu để có thể dùng 3600n có thể nâng tảng đá nặng 120kg?
CẦN GẤP M.N ƠI
haaaaaaaaaaaaaa