Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: \(x\notin\left\{-3;2\right\}\)
b: \(A=\dfrac{x^2-4-5+x+3}{\left(x-2\right)\left(x+3\right)}=\dfrac{x^2+x-6}{\left(x-2\right)\left(x+3\right)}=\dfrac{x+2}{x-2}\)
c: Để A=3/4 thì 4x-8=3x+6
=>x=14
d: Để A nguyên thì \(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{3;1;4;0;6;-2\right\}\)
Pt tương đương:
\(2x^2+3\left(x^2-1\right)=5x^2+5x\)
\(\Leftrightarrow2x^2+3x^2-3=5x^2+5x\)
\(\Leftrightarrow5x=-3\)
\(\Leftrightarrow x=-\frac{3}{5}\)
Vậy pt có nghiệm là :\(x=-\frac{3}{5}\)
\(a,\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{1}{2}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\\ c,\Leftrightarrow2x^2-10x-3x-2x^2=26\\ \Leftrightarrow-13x=26\Leftrightarrow x=-2\\ d,\Leftrightarrow x^2-18x+16=0\\ \Leftrightarrow\left(x^2-18x+81\right)-65=0\\ \Leftrightarrow\left(x-9\right)^2-65=0\\ \Leftrightarrow\left(x-9+\sqrt{65}\right)\left(x-9-\sqrt{65}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=9-\sqrt{65}\\9+\sqrt{65}\end{matrix}\right.\)
\(e,\Leftrightarrow x^2-10x-25=0\\ \Leftrightarrow\left(x-5\right)^2-50=0\\ \Leftrightarrow\left(x-5-5\sqrt{2}\right)\left(x-5+5\sqrt{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5+5\sqrt{2}\\x=5-5\sqrt{2}\end{matrix}\right.\\ f,\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\\ g,\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\\ h,\Leftrightarrow x^2+2x+3x+6=0\\ \Leftrightarrow\left(x+3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\\ i,\Leftrightarrow4x^2-12x+9-4x^2+4=49\\ \Leftrightarrow-12x=36\Leftrightarrow x=-3\)
\(j,\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\\ k,\Leftrightarrow x^2\left(x-1\right)=4\left(x-1\right)^2\\ \Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(P=\left(\frac{9}{x^2-3x}+\frac{x-2}{x}-\frac{x}{x-3}\right).\frac{x}{3-3x}\)
a,\(ĐKXĐ:x\ne0;x\ne3;x\ne1\)
\(P=\left(\frac{9}{x^2-3x}+\frac{x-2}{x}-\frac{x}{x-3}\right).\frac{x}{3-3x}=\left(\frac{9}{x\left(x-3\right)}+\frac{x-2}{x}-\frac{x}{x-3}\right).\frac{x}{3\left(1-x\right)}\)
\(=\left(\frac{9+\left(x-2\right)\left(x-3\right)-x.x}{x\left(x-3\right)}\right).\frac{x}{3\left(1-x\right)}=\frac{9+x^2-5x+6-x^2}{x\left(x-3\right)}.\frac{x}{3\left(1-x\right)}\)
\(=\frac{-5x+15}{x\left(x-3\right)}.\frac{x}{3\left(1-x\right)}=\frac{-5\left(x-3\right)}{x\left(x-3\right)}.\frac{x}{3\left(1-x\right)}=-\frac{5}{3\left(1-x\right)}\)
b, \(x=\frac{1}{2}\)
\(\Rightarrow P=-\frac{5}{3\left(1-\frac{1}{2}\right)}=-\frac{5}{3.\frac{1}{2}}=-5:\frac{3}{2}=-\frac{10}{3}\)
c, Để \(P\in z\)thì \(3\left(1-x\right)\inƯ\left(5\right)=\left(-5;-1;1;5\right)\)
\(3\left(1-x\right)=-5\Rightarrow1-x=-\frac{5}{3}\Rightarrow x=\frac{8}{3}\)
\(3\left(1-x\right)=-1\Rightarrow1-x=-\frac{1}{3}\Rightarrow x=\frac{4}{3}\)
\(3\left(1-x\right)=1\Rightarrow1-x=\frac{1}{3}\Rightarrow x=\frac{2}{3}\)
\(3\left(1-x\right)=5\Rightarrow1-x=\frac{5}{3}\Rightarrow x=-\frac{2}{3}\)
(x2 + x) (x2 + x + 1) = 6
(x2 + x) (x2 + x + 1) = 2 . 3 = (-2) . (-3)
Vì x2 + x và x2 + x + 1 là 2 số liên tiếp nên x2 + x = 2, x2 + x + 1 = 3 hoặc x2 + x = -3, x2 + x + 1 = -2
=> x2 + x = 2 hoặc x2 + x = -3
Vì x2 + x = x . (x + 1) là tích 2 số liên tiếp nên x2 + x chẵn
=> x . (x + 1) = 2 = 1 x 2
=> x = 1
Vậy x = 1