Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{7}=\frac{18}{14}\)
\(\Rightarrow x=\frac{18\cdot7}{14}=9\)
2,5 : (3x-5) = 3: (4x-2)
=> (3x-5)(4x-2) =2,5 : 3
=> 12x^2 - 6x - 20x + 10 - 5/6 = 0
=> 12x^2 - 26x + 55/6 = 0
\(x:y:z=2:3:4\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{-45}{9}=-5\)
\(\dfrac{x}{2}=-5\Rightarrow x=-10\\
\dfrac{y}{3}=-5\Rightarrow y=-15\\
\dfrac{z}{4}=-5\Rightarrow z=-20\)
Áp dụng tính chất dãy tỉ số bằng nhau có
x =-45.2= -90
y = -45.3= -135
z = -45.4= -180
=> x= -90, y= -135, z= -180
Câu 1:
\(x^4=16\)
\(\Rightarrow x=2\) hoặc \(x=-2\)
Vậy \(x\in\left\{2;-2\right\}\)
Câu 2:
\(\left(x+5\right)^3=-64\)
\(\Rightarrow\left(x+5\right)^3=\left(-4\right)^3\)
\(\Rightarrow x+5=-4\)
\(\Rightarrow x=-9\)
Vậy \(x=-9\)
Câu 4:
Giải:
Ta có: \(\frac{x}{2}=\frac{y}{-5}\) và \(x-y=-7\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)
+) \(\frac{x}{2}=-1\Rightarrow x=-2\)
+) \(\frac{y}{-5}=-1\Rightarrow y=5\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(-2;5\right)\)
Câu 5:
Giải:
Đổi 10km = 10000m
Gọi 10000m dây đồng nặng x ( kg )
Vì số dây đồng tỉ lệ thuận với số cân nặng nên ta có:
\(\frac{5}{43}=\frac{10000}{x}\)
\(\Rightarrow x=\frac{10000.43}{5}=86000\left(kg\right)\)
Vậy 1km dây đồng nặng 86000 kg
Câu 6:
Giải:
Gọi số học sinh giỏi, khá , trung bình của khối 7 là a, b, c \(\left(a;b;c\in N\right)\)
Ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) và \(c+b-a=180\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{c+b-a}{3+5-2}=\frac{180}{6}=30\)
+) \(\frac{a}{2}=30\Rightarrow a=60\)
+) \(\frac{b}{3}=30\Rightarrow b=90\)
+) \(\frac{c}{5}=30\Rightarrow c=150\)
Vậy số học sinh giỏi là 60 học sinh
số học sinh khá là 90 học sinh
số học sinh trung bình là 150 học sinh
Câu 7:
a) Ta có: \(y=f\left(x\right)=x^2-8\)
\(f\left(3\right)=3^2-8=9-8=1\)
\(f\left(-2\right)=\left(-2\right)^2-8=4-8=-4\)
b) Khi y = 17
\(\Rightarrow17=x^2-8\)
\(\Rightarrow x^2=25\)
\(\Rightarrow x=5\) hoặc \(x=-5\)
Vậy \(x\in\left\{5;-5\right\}\)
a. Theo t/c dãy tỉ số = nhau:
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{42}{7}=6\)
=>\(\frac{x}{2}=6\Rightarrow x=6.2=12\)
=>\(\frac{y}{5}=6\Rightarrow y=6.5=30\)
Vậy x=12; y=30.
b. \(\left|x-0,25\right|-\frac{5}{6}=1\frac{2}{3}\)
=> \(\left|x-0,25\right|=1\frac{2}{3}+\frac{5}{6}\)
=> \(\left|x-0,25\right|=\frac{5}{2}=2,5\)
+) x-0,25=2,5
=> x=2,5+0,25
=> x=2,75
+) x-0,25=-2,5
=> x=-2,5+0,25
=> x=-2,25
Vậy x \(\in\){-2,25; 2,75}.
c. y=kx
=> -17=k.8
=> k=-17/8
Vậy hệ số tỉ lệ là -17/8.
a) \(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{42}{7}=6\)
=> x=12 ; y = 30
b) \(\left|x-0,25\right|-\frac{5}{6}=1\frac{2}{3}=>\left|x-0,25\right|=\frac{5}{3}+\frac{5}{6}=\frac{5}{2}=2,5\)
=> x-0,25 = 2,5 hoac: -2,5
=> x = 2,75 hoac x= -2,25
Vay: x la { 2,75 ; -2,25 }
c) Ti le gi vay ban.
Neu thuan thi he so ti le la: \(-\frac{17}{8}\)
Neu nghich thi he so ti le la : -136