K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2019

Đặt \(x^2+2x+20=a^2\left(a\ge0\right)\)

\(\Leftrightarrow x^2+2x+1+19=a^2\)

\(\Leftrightarrow\left(x+1\right)^2+19=a^2\)

\(\Leftrightarrow a^2-\left(x+1\right)^2=19\)

\(\Leftrightarrow\left(a+x+1\right)\left(a-x-1\right)=19=19.1\)

Vì \(a\ge0;x\ge0\)nên\(\left(a+x+1\right)\ge\left(a-x-1\right)\)

Suy ra:\(\hept{\begin{cases}a+x+1=19\\a-x-1=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a+x=18\\a-x=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=10\\x=8\end{cases}}\)(Phần này mình làm nhanh)

Vậy khi x=8 thì \(x^2+2x+20\)là số chính phương

1 tháng 10 2023

a) Do \(x^2-2x-6\) là số chính phương đặt \(x^2-2x-6=a^2\) 

\(\Rightarrow x^2-2x+1-7=a^2\)

\(\Rightarrow\left(x-1\right)^2-7=a^2\)

\(\Rightarrow\left(x-1\right)^2-a^2=7\)

\(\Rightarrow\left(x-a-1\right)\left(x+a-1\right)=7\)  

Do: \(x-a-1< x+a-1\) nên:

\(\left\{{}\begin{matrix}x-a-1=1\\x+a-1=7\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2x-2=8\\x+a=8\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2x=10\\x+a=8\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=5\\a=3\end{matrix}\right.\)  

Vậy: ... 

16 tháng 6 2019

a, Để M nguyên <=> 2x+1 \(⋮\)2

=> 2x+1 \(\in\)Ư (2)={ 2,-2,1,-1}

Đk x \(\in\)Z

Với 2x+1= 2 => x= 1/2. ( loại)

...

Làm tt => x={ 0; -1}

Vậy x= 0, x= -1 thì M nguyên

b, N = (x-3)/x = 1-(3/x) 

Để N nguyên <=> 3\(⋮\)

<=> x \(\in\)Ư(3)={ 1,-1,3,-3}

Vậy x ={ 1,-1,3,-3} thì N nguyên

c, H = (x-2)/2x (1)

Để H nguyên <=>x-2 chia hết cho 2x

=> 2.(x-2) phải chia hết cho 2x 

Hay 2.(x-2) /2x = 1-(2/x) nguyên

=> x thuộc Ư (2)={ 2,-2,1,-1}

Thay x vào(1) để H nguyên => x={2,-2}

Vậy x={2,-2} thì H nguyên

16 tháng 6 2019

a, mình viết lộn nhé là để M nguyên <=> 2\(⋮\)2x+1