Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\ge0\)
\(\left(\sqrt{x}-4\right)\left(|x+2|-1\right)\left(x^2-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-4=0\Rightarrow x=16\left(tm\right)\\|x+2|-1=0\Leftrightarrow\left[{}\begin{matrix}x+2=1\Rightarrow x=-1\\x+2=-1\Rightarrow x=-3\end{matrix}\right.\\x^2-3=0\Rightarrow x=\pm\sqrt{3}\end{matrix}\right.\)
Bài 1 : \(4\left(x-1\right)^2=x^2\Leftrightarrow4\left(x^2-2x+1\right)=x^2\)
\(\Leftrightarrow4x^2-8x+4-x^2=0\Leftrightarrow3x^2-8x+4=0\)
\(\Leftrightarrow\left(3x-2\right)\left(x-2\right)=0\Leftrightarrow x=\frac{2}{3};2\)
Áp dụng với trung bình cộng 2 số : \(\frac{\frac{2}{3}+2}{2}=\frac{8}{\frac{3}{2}}=\frac{4}{3}\)
Bài 2 : Đặt A = \(x^2-2x-3=x^2-2x+1-4=\left(x-1\right)^2-4\ge-4\)
Dấu ''='' xảy ra <=> x = 1
Vậy GTNN A là -4 <=> x = 1
Bài 3 : \(x^2-5x+4=x^2-4x-x+4=x\left(x-4\right)-\left(x-4\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x-4\right)\Leftrightarrow x=1;4\)
Tổng các giá trị x là : \(1+4=5\)
3, Tổng các giá trị của x thỏa mãn:
\(x^2-5x+4=0\)
\(\Leftrightarrow x^2-4x-x+4=0\)
\(\Leftrightarrow x\left(x-4\right)-\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}\)
Vậy tổng các giá trị x thỏa mãn phương trình: S = 4 + 1 = 5
Ta có phương trình sau:\(x^5-x^4-x^3-x^2-x-2=0\)
Vì có hệ số tự do là -2 nên ta nhẩm nghiệm nhận thấy x=2 là nghiệm của phương trình nên ta tách pt có nhân tử là x-2
\(\Rightarrow\left(x-2\right)\left(x^4+x^3+x^2+x+1\right)=0\)
Mà x^4+x^3+x^2+x+1 không phân tích được nên x-2=0
x=2
vậy tổng các giá trị của pt là 2
Ta có hệ phương trình như sau:x5-x4-x3-x2-x-2=0
Vì có hệ số tự do là -2 nên ta nhẩm nghiệm nhận thấy x=2 là nghiệm của phương trình nên ta tách phương trình có nhân tử là x-2
Suy ra (x-2)(x4+x3+x2+x+1)=0
Mà x^4+x^3+x^2+x+1 không phân tích được nên x-2=0
x=2
Vậy số cần tìm là 2
Ai tích mình mình tích lại cho
Bạn nên viết lại đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
\(\Leftrightarrow\left(x^4-20x^2+100\right)-36=0\)
\(\Leftrightarrow\left(x^2-10\right)^2=36\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-10=6\\x^2-10=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=16\\x^2=4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\pm4\\x=\pm2\end{matrix}\right.\)
\(x^4-20x^2+64=0\)
Đặt \(t=x^2\)
\(PT\Leftrightarrow t^2-20t+64=0\\ \Leftrightarrow t^2-16t-4t+64=0\\ \Leftrightarrow t\left(t-16\right)-4\left(t-16\right)=0\\ \Leftrightarrow\left(t-16\right)\left(t-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t-16=0\\t-4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}t=16\\t=4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2=16\\x^2=4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\pm\sqrt{16}\\x\pm\sqrt{4}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\pm4\\x=\pm2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\\x=2\\x=-2\end{matrix}\right.\\ Vậyx\in\left\{4;-4;2;-2\right\}\)
a: \(A=\dfrac{x^2+1}{x}+\dfrac{x^3-1}{x^2-x}+\dfrac{x^4-x^3+x-1}{x-x^3}\)
\(=\dfrac{x^2+1}{x}+\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x\left(x-1\right)}-\dfrac{x^3\left(x-1\right)+\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^2+1}{x}+\dfrac{x^2+x+1}{x}-\dfrac{\left(x-1\right)\left(x^3+1\right)}{x\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^2+1+x^2+x+1}{x}-\dfrac{x^2-x+1}{x}\)
\(=\dfrac{2x^2+x+2-x^2+x-1}{x}=\dfrac{x^2+2x+1}{x}=\dfrac{\left(x+1\right)^2}{x}\)
b: \(x^2+x=12\)
=>\(x^2+x-12=0\)
=>(x+4)(x-3)=0
=>\(\left[{}\begin{matrix}x+4=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\x=-4\left(loại\right)\end{matrix}\right.\)
Thay x=3 vào A, ta được:
\(A=\dfrac{\left(3+1\right)^2}{3}=\dfrac{16}{3}\)
Khi x=-4 thì \(A=\dfrac{\left(-4+1\right)^2}{-4}=\dfrac{9}{-4}=-\dfrac{9}{4}\)
c: \(A-4=\dfrac{\left(x+1\right)^2}{x}-4\)
\(=\dfrac{\left(x+1\right)^2-4x}{x}\)
\(=\dfrac{x^2+2x+1-4x}{x}=\dfrac{x^2-2x+1}{x}=\dfrac{\left(x-1\right)^2}{x}\)>0 với mọi x>0
=>A>4
\(\Leftrightarrow x^5-1=x^4+x^3+x^2+x+1\)
\(\Leftrightarrow\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)=x^4+x^3+x^2+1\)
\(\Leftrightarrow\left(x-2\right)\left(x^4+x^3+x^2+x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[\left(x^2+\dfrac{x}{2}\right)^2+\dfrac{3}{4}\left(x+\dfrac{2}{3}\right)^2+\dfrac{2}{3}\right]=0\)
\(\Leftrightarrow x=2\)