Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2y^2-3xy+2x-4y+3=0\)
\(\Leftrightarrow4x^2+8y^2-12xy+8x-16y+12=0\)
\(\Leftrightarrow\left(4x^2-12xy+9y^2\right)-y^2+8x-16y+12=0\)
\(\Leftrightarrow\left(2x-3y\right)^2+4\left(2x-3y\right)+4-\left(y^2-4y+4\right)+6=0\)
\(\Leftrightarrow\left(2x-3y+2\right)^2-\left(y-2\right)^2+6=0\)
\(\Leftrightarrow\left(2x-3y+2-y+2\right)\left(2x-3y+2+y-2\right)=-6\)
\(\Leftrightarrow\left(2x-4y+4\right)\left(2x-2y\right)=-6\)
\(\Leftrightarrow\left(x-2y+2\right)\left(x-y\right)=-\frac{3}{2}\)
Đến đây ta thấy vô lý
P/S:is that true ?
\(x^2+xy=x+y+3\)
\(\Leftrightarrow x^2+xy-x-y=3\)
\(\Leftrightarrow\left(x^2+xy\right)-\left(x+y\right)=3\)
\(\Leftrightarrow x\left(x+y\right)-\left(x+y\right)=3\)
\(\Leftrightarrow\left(x-1\right)\left(x+y\right)=3\)
Vì x, y là các số nguyên nên \(x-1,x+y\)là các số nguyên.
Do đó \(\left(x-1\right)\left(x+y\right)=3=1.3=3.1=\left(-1\right).\left(-3\right)=\left(-3\right).\left(-1\right)\)
Ta có bảng sau:
x-1 | -3 | -1 | 1 | 3 |
x | -2 | 0 | 2 | 4 |
x+y | -1 | -3 | 3 | 1 |
y | 1 | -3 | 1 | -3 |
Vậy phương trình có tập nghiệm: \(\left(x;y\right)=\left(-2;1\right);\left(0;-3\right);\left(2;1\right);\left(4;-3\right)\)
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
\(x^2+x+3=y^2\)
<=> 4 ( x2+x+3) = 4y2
<=> 4x2+4x+12=4y2
<=> 4x2+4x+1+11-4y2=0
<=> (2x+1)2-4y2= -11
<=> ( 2x +1 -2y) (2x+1+2y)=-11
Vì x,y thuộc Z nên 2x+1-2y và 2x+1+2y thuộc Z
=> 2x+1-2y thuộc Ư(11) và 2x +1+2y thuộc Ư(11)
Mà Ư(11)= { 1;-1;11;-11}
Ta có:
TH1: \(\begin{cases}2x+1-2y=1\\2x+1+2y=-11\end{cases}=>2x+1-2y+2x+1+2y=1+\left(-11\right)< =>4x+1=-10\)
< => x=\(\frac{-11}{4}\)( Không là số nguyên nên loại)
TH2: \(\hept{\begin{cases}2x+1-2y=-1\left(1\right)\\2x+1+2y=11\end{cases}=>2x+1-2y+2x+1+2y=-1+11}\)
<=> 4x+2=10 <=> x= 2 ( Là số nguyên )
Thay x=2 vào (1) ta có 2.2+1-2y=-1 <=> y= 3 ( là số nguyên )
TH3: \(\hept{\begin{cases}2x+1-2y=11\\2x+1+2y=-1\end{cases}}\)
Th4\(\hept{\begin{cases}2x+1-2y=-11\\2x+1+2y=1\end{cases}}\)
Trường hợp 3 và 4 bạn tự tính nhé!! Nếu x, y là số nguyên thì chọn , còn ko là số nguyên thì loại nhé!!
Học tốt ạ