Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x + 4 là ước của 7x + 20
=> 7x + 20 chia hết cho x + 4
=> 7x + 28 - 8 chia hết cho x + 4
=> 7.(x + 4) - 8 chia hết cho x + 4
Mà 7.(x + 4) chia hết cho x + 4
=> 8 chia hết cho x + 4
=> x + 4 \(\in\)Ư(8)={-8; -4; -2; -1; 1; 2; 4; 8}
=> x \(\in\){-12; -8; -6; -5; -3; -2; 0; 4}.
Ta có
\(\frac{7x+20}{x+4}=\frac{7\left(x+4\right)-8}{x+4}=7-\frac{8}{x+4}\)
Để x+4 là ước của 7x+20 thì 8 chia hết chõ+4
Hay x+4 thuộcƯ(8)
=>x+4=(-8;-4;-2;-2;1;2;4;8)
=>x=(....)
Nếu thấy bài làm của mình đúng thì tick nha bạn,mình xin chân thành cảm ơn.
\(\Leftrightarrow3\left(x-2\right)+4⋮x-2\\ \Leftrightarrow x-2\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\\ \Leftrightarrow x\in\left\{-2;0;1;3;4;6\right\}\)
\(\Leftrightarrow x\in\left\{-2;0;1;3;4;6\right\}\)
Có : c+7 là ước của 10
=> c+7 thuộc Ư(10)={1;-1;2;-2;5;-5;10;-10}
... (tự làm)
Có c+7 là Ư(10)={1;2;5;10;-1;-2;-5;-10}
=>c thuộc{-6;-5;-2;3;-8;-9;-12;-17}
Vậy.....
Ta có : \(x-2\) là ước của \(3x+5\)
\(\Rightarrow3x+5⋮x-2\)
\(\Rightarrow3x-6+11⋮x-2\)
\(\Rightarrow3\left(x-2\right)+11⋮x-2\)
\(\Rightarrow11⋮x-2\)
\(\Rightarrow x-2\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow x\in\left\{1;3;-9;13\right\}\)
Vậy \(x\in\left\{1;3;-9;13\right\}\)
x - 2 là ước của 3x + 5
=> \(3x+5⋮x-2\)
=> \(3\left(x-2\right)-1⋮x-2\)
=> \(1⋮x-2\)
=> \(\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
Ta có : x - 3 \(\in\)Ư(5x - 8) <=> 5x - 8 \(⋮\)x - 2
<=> 5(x - 2) + 2 \(⋮\)x - 2
Do x - 2 \(⋮\)x - 2 => 5(x - 2) \(⋮\)x - 2
Để 5x - 8 \(⋮\)x - 2 = > x - 2 \(\in\)Ư(2) = {1; 2; -1; -2}
Lập bảng :
x - 2 | 1 | -1 | 2 | -2 |
x | 3 | 1 | 4 | 0 |
Vậy ...
Ta có b-7 là ước của 3b-27
=>3b-27 chia hết cho b-7
=>3b-21-6 chia hết cho b-7
=>3(b-7)-6 chia hết cho b-7
=>6 chia hết cho b-7
=>b-7 là ước của 6
Ư(6)=-1;1-2;2;-3;3;-6;6
b-7=-1=>b=6
b-7=1=>b=8
b-7=-2=>b=5
b-7=2=>b=9
b-7=-3=>b=4
b-7=3=>b=10
b-7=-6=>b=1
b-7=6=>b=13
Vậy b=6;8;5;9;4;10;1;13 thì b-7 là ước số của 3b-27
\(\text{Ta có : }x+7⋮x+7\)
\(\Rightarrow4\left(x+7\right)⋮x+7\)
\(\Rightarrow4x+28⋮x+7\)
Lại có : x + 7 là ước của4x + 20
\(\Rightarrow4x+20⋮x+7\)
\(\Rightarrow\left(4x+28\right)-\left(4x+20\right)⋮x+7\)
\(4x+28-4x-20⋮x+7\)
\(28-20⋮x+7\)
\(8⋮x+7\)
\(\Rightarrow x+7\in\text{Ư}\left(8\right)\)
\(\Rightarrow x+7\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
\(\Rightarrow x\in\left\{-6;-8;-5;-9;-3;-11;1;-15\right\}\)
x + 7 là ước số của 4x + 20
=> 4x + 20 \(⋮\)x + 7
=> 4x + 28 - 8 \(⋮\)x + 7
=> 4(x + 7) - 8 \(⋮\)x + 7
Nhận thấy 4(x + 7) \(⋮\)x + 7
=> - 8 \(⋮\)x + 7
=> x + 7 \(\inƯ\left(-8\right)\)
=> x + 7 \(\in\left\{1;2;4;8;-1;-2;-4;-8\right\}\)
=> \(x\in\left\{-6;-5;-3;1;-8;-9;-13;-15\right\}\)