Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : x - 3 \(\in\)Ư(5x - 8) <=> 5x - 8 \(⋮\)x - 2
<=> 5(x - 2) + 2 \(⋮\)x - 2
Do x - 2 \(⋮\)x - 2 => 5(x - 2) \(⋮\)x - 2
Để 5x - 8 \(⋮\)x - 2 = > x - 2 \(\in\)Ư(2) = {1; 2; -1; -2}
Lập bảng :
x - 2 | 1 | -1 | 2 | -2 |
x | 3 | 1 | 4 | 0 |
Vậy ...
x + 4 là ước của 7x + 20
=> 7x + 20 chia hết cho x + 4
=> 7x + 28 - 8 chia hết cho x + 4
=> 7.(x + 4) - 8 chia hết cho x + 4
Mà 7.(x + 4) chia hết cho x + 4
=> 8 chia hết cho x + 4
=> x + 4 \(\in\)Ư(8)={-8; -4; -2; -1; 1; 2; 4; 8}
=> x \(\in\){-12; -8; -6; -5; -3; -2; 0; 4}.
Ta có
\(\frac{7x+20}{x+4}=\frac{7\left(x+4\right)-8}{x+4}=7-\frac{8}{x+4}\)
Để x+4 là ước của 7x+20 thì 8 chia hết chõ+4
Hay x+4 thuộcƯ(8)
=>x+4=(-8;-4;-2;-2;1;2;4;8)
=>x=(....)
Nếu thấy bài làm của mình đúng thì tick nha bạn,mình xin chân thành cảm ơn.
\(\text{Ta có : }x+7⋮x+7\)
\(\Rightarrow4\left(x+7\right)⋮x+7\)
\(\Rightarrow4x+28⋮x+7\)
Lại có : x + 7 là ước của4x + 20
\(\Rightarrow4x+20⋮x+7\)
\(\Rightarrow\left(4x+28\right)-\left(4x+20\right)⋮x+7\)
\(4x+28-4x-20⋮x+7\)
\(28-20⋮x+7\)
\(8⋮x+7\)
\(\Rightarrow x+7\in\text{Ư}\left(8\right)\)
\(\Rightarrow x+7\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
\(\Rightarrow x\in\left\{-6;-8;-5;-9;-3;-11;1;-15\right\}\)
x + 7 là ước số của 4x + 20
=> 4x + 20 \(⋮\)x + 7
=> 4x + 28 - 8 \(⋮\)x + 7
=> 4(x + 7) - 8 \(⋮\)x + 7
Nhận thấy 4(x + 7) \(⋮\)x + 7
=> - 8 \(⋮\)x + 7
=> x + 7 \(\inƯ\left(-8\right)\)
=> x + 7 \(\in\left\{1;2;4;8;-1;-2;-4;-8\right\}\)
=> \(x\in\left\{-6;-5;-3;1;-8;-9;-13;-15\right\}\)
Vì \(x\inℤ\Rightarrow x+9\inℤ\)
\(\Rightarrow x+9\inƯ\left(11\right)=\left\{-1;-11;1;11\right\}\)
Ta có bảng giá trị
x+9 | -1 | -11 | 1 | 11 |
x | -10 | -20 | -8 | 2 |
Vậy \(x\in\left\{-10;-20;-8;2\right\}\)
x\(\in\left\{2,13,24,....\right\}\)với x>0
x\(\in\left\{-9,-20,-31,-42,...\right\}\)với x<0
b + 3 là ước số của 6b + 31
\(\Rightarrow6b+31⋮b+3\)
\(\Rightarrow6\left(b+3\right)+13⋮b+3\)
\(\Rightarrow13⋮b+3\)
\(\Rightarrow b+3\in\left\{13,1,-13,-1\right\}\)
\(\Rightarrow b\in\left\{10,-2,-16,-4\right\}\)
Ta có: b - 3 \(\in\)Ư(8b - 14)
<=> 8b - 14 \(⋮\)b - 3
<=> 8(b - 3) + 10 \(⋮\)b - 3
<=> 10 \(⋮\)b - 3
<=> b - 3 \(\in\)Ư(10) = {1; 2; 5; 10; -1; -2; -5; -10}
Lập bảng :
b - 3 | 1 | 2 | 5 | 10 | -1 | -2 | -5 | -10 |
b | 4 | 5 | 8 | 13 | 2 | 1 | -2 | -7 |
Vậy ....
Giải
b - 3 là ước số của 8b - 14.
\(\Rightarrow\left(8b-14\right)⋮\left(b-3\right)\)
\(\Rightarrow\left(8b-24+10\right)⋮\left(b-3\right)\)
\(\Rightarrow\left[8\left(b-3\right)+10\right]⋮\left(b-3\right)\)
Vì \(\left[8\left(b-3\right)\right]⋮\left(b-3\right)\) nên \(10⋮\left(b-3\right)\)
\(\Leftrightarrow b-3\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Ta có bảng sau :
\(b-3\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(5\) | \(-5\) | \(10\) | \(-10\) |
\(b\) | \(4\) | \(2\) | \(5\) | \(-1\) | \(8\) | \(-2\) | \(13\) | \(-7\) |
Vậy \(b\in\left\{4;2;5;-1;8;-2;13;-7\right\}\)