K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2020

Câu 1:

a) \(\left(x^2+y^2-36\right)^2-4x^2y^2\)

\(=\left(x^2+y^2-36\right)^2-\left(2xy\right)^2\)

\(=\left(x^2+y^2+2xy-36\right)\left(x^2+y^2-2xy-36\right)\)

\(=\left[\left(x+y\right)^2-36\right]\left[\left(x-y\right)^2-36\right]\)

\(=\left(x+y+6\right)\left(x+y-6\right)\left(x-y+6\right)\left(x-y-6\right)\)

b) \(\left(x^2+x\right)^2-5\left(x^2+x\right)+6\)

\(=\left(x^2+x\right)^2-2\left(x^2+x\right)-3\left(x^2+x\right)+6\)

\(=\left(x^2+x\right)\left(x^2+x-2\right)-3\left(x^2+x-2\right)\)

\(=\left(x^2+x-3\right)\left(x^2+x-2\right)\)

\(=\left(x^2+x-3\right)\left(x-2\right)\left(x+1\right)\)

1 tháng 3 2020

1) a) (x2 + y2 - 36)2 - 4x2y2 

= (x2 + y2 - 36 - 2xy)(x2 + y2 - 36 + 2xy)

= [(x - y)2 - 36][(x + y)2 - 36]

= (x - y - 6)(x - y  + 6)(x + y + 6)(x + y - 6)

b) (x2 + x)2 - 5(x2 + x) + 6

= (x2 + x)2 - 2(x2 + x) - 3(x2 + x) + 6

= (x2  + x)(x2 + x - 2) - 3(x2 + x - 2)

= (x2 + x - 3)(x2 + 2x - x - 2)

=  (x2 + x - 3)(x - 1)(x + 2)

2) Đặt tính là đc

c) Ta có: \(P=x^3+y^3+6xy\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+6xy\)

\(=\left(x+y\right)^3-3xy\left(x+y-2\right)\)

\(=2^3=8\)

7 tháng 11 2019

Áp dụng định lý Bezout: f(x) chia hết cho ax + b \(\Leftrightarrow f\left(\frac{-b}{a}\right)=0\)

Đặt \(g\left(x\right)=4x^4+2x^3+3x^2-4x+5+m\)

Để đa thức \(g\left(x\right)=4x^4+2x^3+3x^2-4x+5+m\)chia hết cho nhị thức 2x + 3 thì :

\(g\left(\frac{-3}{2}\right)=4.\left(\frac{-3}{2}\right)^4+2.\left(\frac{-3}{2}\right)^3+3.\left(\frac{-3}{2}\right)^2-4.\frac{-3}{2}+5+m=0\)

\(\Leftrightarrow\frac{81}{4}-\frac{27}{4}+\frac{27}{4}+6+5+m=0\)

\(\Leftrightarrow\frac{81}{4}-11+m=0\)

\(\Leftrightarrow\frac{37}{4}+m=0\)

\(\Leftrightarrow m=\frac{-37}{4}\)

Vậy \(m=\frac{-37}{4}\)thì \(4x^4+2x^3+3x^2-4x+5+m\)chia hết cho 2x + 3

16 tháng 12 2020

Bài 1.

a)\(\frac{4x-4}{x^2-4x+4}\div\frac{x^2-1}{\left(2-x\right)^2}=\frac{4\left(x-1\right)}{\left(x-2\right)^2}\div\frac{\left(x-1\right)\left(x+1\right)}{\left(x-2\right)^2}=\frac{4\left(x-1\right)}{\left(x-2\right)^2}\times\frac{\left(x-2\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{4}{x+1}\)

b) \(\frac{2x+1}{2x^2-x}+\frac{32x^2}{1-4x^2}+\frac{1-2x}{2x^2+x}=\frac{2x+1}{x\left(2x-1\right)}+\frac{-32x^2}{4x^2-1}+\frac{1-2x}{x\left(2x+1\right)}\)

\(=\frac{\left(2x+1\right)\left(2x+1\right)}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-32x^3}{x\left(2x-1\right)\left(2x+1\right)}+\frac{\left(1-2x\right)\left(2x-1\right)}{x\left(2x-1\right)\left(2x+1\right)}\)

\(=\frac{4x^2+4x+1}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-32x^3}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-4x^2+4x-1}{x\left(2x-1\right)\left(2x+1\right)}\)

\(=\frac{4x^2+4x+1-32x^3-4x^2+4x-1}{x\left(2x-1\right)\left(2x+1\right)}=\frac{-32x^3+8x}{x\left(2x-1\right)\left(2x+1\right)}\)

\(=\frac{-8x\left(4x^2-1\right)}{x\left(2x-1\right)\left(2x+1\right)}=\frac{-8x\left(2x-1\right)\left(2x+1\right)}{x\left(2x-1\right)\left(2x+1\right)}=-8\)

c) \(\left(\frac{1}{x+1}+\frac{1}{x-1}-\frac{2x}{1-x^2}\right)\times\frac{x-1}{4x}\)

\(=\left(\frac{1}{x+1}+\frac{1}{x-1}+\frac{2x}{x^2-1}\right)\times\frac{x-1}{4x}\)

\(=\left(\frac{x-1}{\left(x-1\right)\left(x+1\right)}+\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{2x}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-1}{4x}\)

\(=\left(\frac{x-1+x+1+2x}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-1}{4x}\)

\(=\frac{4x}{\left(x-1\right)\left(x+1\right)}\times\frac{x-1}{4x}=\frac{1}{x+1}\)

Bài 3.

N = ( 4x + 3 )2 - 2x( x + 6 ) - 5( x - 2 )( x + 2 )

= 16x2 + 24x + 9 - 2x2 - 12x - 5( x2 - 4 )

= 14x2 + 12x + 9 - 5x2 + 20

= 9x2 + 12x + 29

= 9( x2 + 4/3x + 4/9 ) + 25

= 9( x + 2/3 )2 + 25 ≥ 25 > 0 ∀ x 

=> đpcm

13 tháng 11 2016

Câu 1:

\(2x^3-3x^2+x+a\)

\(=2\left(x^3-6x^2+12x-8\right)+9\left(x^2-4x+4\right)+13\left(x-2\right)+\left(6+a\right)\)

\(=2\left(x-2\right)^3+9\left(x-2\right)^2+13\left(x-2\right)+\left(6+a\right)\)chia hết cho \(x-2\)khi và chỉ khi :

\(6+a=0\Leftrightarrow a=-6\). Vậy \(a=-6\).

Câu 2:

\(\left(x+1\right)\left(2x-x\right)-\left(3x+5\right)\left(x+2\right)=4x^2+1\)

\(\Leftrightarrow x^2+x-\left(3x^2+11x+10\right)=-4x^2+1\)

\(\Leftrightarrow x^2+x-3x^2-11x-10+4x^2-1=0\)

\(\Leftrightarrow2x^2-10x-11=0\)

\(\Delta'=\left(-5\right)^2-2\left(-11\right)=47>0\)

\(\Rightarrow\)Phương trình có 2 nghiệm phân biệt:

\(x=\frac{5+\sqrt{47}}{2}\)hoặc \(x=\frac{5-\sqrt{47}}{2}\)

Vậy phương trình có tập nghiệm \(S=\left\{\frac{5+\sqrt{47}}{2};\frac{5-\sqrt{47}}{2}\right\}\)

b: \(\Leftrightarrow2n^2+n-2n-1+3⋮2n+1\)

\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{0;-1;1;-2\right\}\)

6 tháng 10 2023

Bài 5.5:

\(\left(2x-3\right)\left(x+1\right)+\left(4x^3-6x^2-6x\right):\left(-2x\right)=18\)

\(\Leftrightarrow\left(2x^2+2x-3x-3\right)+2x\cdot\left(2x^2-3x-3\right):\left(-2x\right)=18\)

\(\Leftrightarrow2x^2-x-3-2x^2+3x+3=18\)

\(\Leftrightarrow2x=18\)

\(\Leftrightarrow x=\dfrac{18}{2}\)

\(\Leftrightarrow x=9\) 

11 tháng 1 2016

\(\frac{4x^2-6x+5}{2x-1}=2x-2+\frac{3}{2x-1}\)

Để biểu thức có giá trị nguyên thì \(\left(2x-1\right)\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

Với 2x - 1 = 1 => 2x = 2 => x = 1

      2x - 1 = -1 => 2x = 0 => x = 0

      2x - 1 = 3 => 2x = 4 => x = 2

      2x - 1 = -3 => 2x = -2 => x = -1

Vậy x = {1;0;2;-1}

a: \(2x^5+4x^4-7x^3-44⋮2x^2-7\)

\(\Leftrightarrow2x^5-7x^3+4x^4-14x^2+14x^2-49+5⋮2x^2-7\)

\(\Leftrightarrow2x^2-7\in\left\{1;-1;5;-5\right\}\)

hay \(x\in\left\{2;-2;1;-1\right\}\)

b: \(2x^2+3x+3⋮2x-1\)

\(\Leftrightarrow2x^2-x+4x-2+5⋮2x-1\)

\(\Leftrightarrow2x-1\in\left\{1;-1;5;-5\right\}\)

hay \(x\in\left\{1;0;3;-2\right\}\)