Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`C=(sqrtx+3)/(sqrtx-2)=(sqrtx-2+5)/(sqrtx-2)=1+5/(sqrtx-2)`
Ta cần tìm `max(5/(sqrtx-2))`
Nếu `0<=x<4` thì `5/(sqrtx-2)<0`
Nếu `x>4` thì `5/(sqrtx-2)>0`
Do đó ta chỉ xét `x>4` hay `x>=5(` Do `x` nguyên `)`
`=>sqrtx-2>=sqrt5-2`
`=>5/(sqrtx-2)<=5/(sqrt5-2)`
`=>C<=1+5/(sqrt5-2)=11+sqrt5`
Vậy `C_(max)=11+sqrt5<=>x=5`
Bài 5:
\(C=\frac{2\sqrt{x}-3}{\sqrt{x}-2}=\frac{2(\sqrt{x}-2)+1}{\sqrt{x}-2}=2+\frac{1}{\sqrt{x}-2}\)
Để $C$ nguyên nhỏ nhất thì $\frac{1}{\sqrt{x}-2}$ là số nguyên nhỏ nhất.
$\Rightarrow \sqrt{x}-2$ là ước nguyên âm lớn nhất
$\Rightarrow \sqrt{x}-2=-1$
$\Leftrightarrow x=1$ (thỏa mãn đkxđ)
Bài 6:
$D(\sqrt{x}+1)=x-3$
$D^2(x+2\sqrt{x}+1)=(x-3)^2$
$2D^2\sqrt{x}=(x-3)^2-D^2(x+1)$ nguyên
Với $x$ nguyên ta suy ra $\Rightarrow D=0$ hoặc $\sqrt{x}$ nguyên
Với $D=0\Leftrightarrow x=3$ (tm)
Với $\sqrt{x}$ nguyên:
$D=\frac{(x-1)-2}{\sqrt{x}+1}=\sqrt{x}-1-\frac{2}{\sqrt{x}+1}$
$D$ nguyên khi $\sqrt{x}+1$ là ước của $2$
$\Rightarrow \sqrt{x}+1\in\left\{1;2\right\}$
$\Leftrightarrow x=0; 1$
Vì $x\neq 1$ nên $x=0$.
Vậy $x=0; 3$
Lời giải:
ĐKXĐ: $x\geq 0; x\neq 9$
\(P=2A:B=\frac{2(\sqrt{x}+1)}{x-9}: \frac{2}{\sqrt{x}-3}=\frac{2(\sqrt{x}+1)}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{2}=\frac{\sqrt{x}+1}{\sqrt{x}+3}\)
\(P=1-\frac{2}{\sqrt{x}+3}\)
Để $P$ nhỏ nhất thì $\frac{2}{\sqrt{x}+3}$ lớn nhất
$\Leftrightarrow \sqrt{x}+3$ nhỏ nhất
Với $x$ nguyên dương, $\sqrt{x}+3$ nhỏ nhất bằng $\sqrt{1}+3=4$ khi $x=1$
$\Rightarrow P_{\min}=\frac{\sqrt{x}+1}{\sqrt{x}+3}=\frac{1+1}{1+3}=\frac{1}{2}$
\(B+1=\dfrac{2\sqrt{x}-1}{\sqrt{x}+3}+1=\dfrac{3\sqrt{x}+2}{\sqrt{x}+3}>0\Rightarrow B>-1\)
\(B-2=\dfrac{2\sqrt{x}-1}{\sqrt{x}+3}-2=\dfrac{-7}{\sqrt{x}+3}< 0\Rightarrow B< 2\)
\(\Rightarrow\left[{}\begin{matrix}B=0\\B=1\end{matrix}\right.\)
- Với \(B=0\Rightarrow\sqrt{x}=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{4}\notin Z\) (loại)
- Với \(B=1\Rightarrow2\sqrt{x}-1=\sqrt{x}+3\Leftrightarrow\sqrt{x}=4\Rightarrow x=16\)
\(\dfrac{\sqrt{x}-5}{\sqrt{x-3}}=1-\dfrac{2}{\sqrt{x}-3}=P\)
Để P nguyên thì \(2⋮\sqrt{x}-3\Leftrightarrow\sqrt{x}-3\inƯ\left(2\right)=\left\{\pm1,\pm2\right\}\)
\(\begin{matrix}\sqrt{x}-3&-1&-2&1&2\\\sqrt{x}&-2\left(L\right)&1&4&5\\x&&1\left(tm\right)&16\left(tm\right)&25\left(tm\right)\end{matrix}\)
Mà x nguyên lớn nhất \(\Rightarrow x=25\)
Để P là số nguyên thì
căn x-3-2 chia hết cho căn x-3
=>căn x-3 thuộc Ư(-2)
mà x nguyên lớn nhất
nên căn x-3=2
=>x=25
\(G=\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{2\left(\sqrt{x}-3\right)+7}{\sqrt{x}-3}=2+\dfrac{7}{\sqrt{x}-3}\)
\(G\in Z\Leftrightarrow\dfrac{7}{\sqrt{x}-3}\in Z\)
Tại \(x\in N\Rightarrow\left[{}\begin{matrix}\sqrt{x}\in N\\\sqrt{x}\in I\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-3\in Z\\\sqrt{x}-3\in I\end{matrix}\right.\)
TH1: \(\sqrt{x}-3\in I\) \(\Rightarrow\dfrac{7}{\sqrt{x}-3}\notin Z\forall x\) thỏa mãn đk
\(TH2:\sqrt{x}-3\in Z\).Để \(\dfrac{7}{\sqrt{x}-3}\in Z\) \(\Leftrightarrow\sqrt{x}-3\inƯ\left(7\right)=\left\{-1;1;-7;7\right\}\)
\(\Leftrightarrow x\in\left\{4;16;100\right\}\)
Tại x=4 =>G=-5
Tại x=16=>G=9
Tại x=100=>G=3
Vậy tại x=6 thì \(G_{max}\)=9
(I là số vô tỉ)
\(G=\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{2\left(\sqrt{x}-3\right)+7}{\sqrt{x}-3}=2+\dfrac{7}{\sqrt{x}-3}\)
Để \(G\in Z\Rightarrow7⋮\sqrt{x}-3\Rightarrow\sqrt{x}-3\in\left\{1;7;-1;-7\right\}\)
mà \(\sqrt{x}-3\ge-3\Rightarrow\sqrt{x}-3\in\left\{1;7;-1\right\}\)
Để \(G_{max}\Rightarrow\dfrac{7}{\sqrt{x}-3}_{max}\Rightarrow\left\{{}\begin{matrix}\sqrt{x}-3>0\\\sqrt{x}-3_{min}\end{matrix}\right.\Rightarrow\sqrt{x}-3=1\Rightarrow x=4\)
\(\Rightarrow G_{max}=5\)
\(P=\dfrac{x-6}{x-2}=\dfrac{x-2-4}{x-2}=1-\dfrac{4}{x-2}\)
Để P lớn nhất thì \(-\dfrac{4}{x-2}\) lớn nhất
=>\(\dfrac{4}{x-2}\) nhỏ nhất
=>x-2=-1
=>x=1
\(P=\dfrac{x-2-4}{x-2}=1-\dfrac{4}{x-2}\)
P đạt giá trị nguyên lớn nhất khi \(\dfrac{4}{x-2}\) đạt giá trị nguyên nhỏ nhất
\(\Rightarrow\dfrac{4}{x-2}=-4\Rightarrow x-2=-1\Rightarrow x=1\)