Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x= 3.x+x
x3.x2=x1.x =x3
x=3++.x3
x=6.3xx=4
a x=5
b m=4.5.
x=4.5-.5.4 +6+
m se co gia tri lon nhat la.4.5.6-7+8
tu di ma tinh tui giai cho roi day neu muon day them goi 0637995421
\(a,\)\(M=\frac{3x+3}{x^3+x^2+x+1}=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}\)
\(=\frac{3\left(x+1\right)}{\left(x+1\right)\left(x^2+1\right)}=\frac{3}{x^2+1}\)
\(b,M\in Z\Leftrightarrow\frac{3}{x^2+1}\in Z\)
\(\Rightarrow3\)\(⋮\)\(x^2+1\)\(\Rightarrow x^2+1\inƯ_3\)
Ta có \(Ư_3=\left\{\pm1;\pm3\right\}\)
Mà \(x^2+1\ge1\)với mọi x
\(\Rightarrow\orbr{\begin{cases}x^2+1=1\\x^2+1=3\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{2}\end{cases}}}\)
\(c,\)\(M_{max}\Leftrightarrow x^2+1\)nhỏ nhất \(\Rightarrow x^2\)nhỏ nhất \(\Rightarrow x=0\)
\(\Rightarrow M_{max}=3\Leftrightarrow x=0\)
Biểu thức:
\(A=\frac{2020-x}{6-x}=\frac{2014+6-x}{6-x}=\frac{2014}{6-x}+1\)
Để A đạt giá trị lớn nhất:
thì \(\frac{2014}{6-x}\)đạt giá trị lớn nhất
<=> \(\frac{2014}{6-x}>0\) và \(6-x\)đạt giá trị bé nhất
=> \(6-x=1\Leftrightarrow x=5\)
Lúc đó A đạt giá trị lớn nhất là: \(maxA=\frac{2014}{6-5}+1=2015\)
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
a) đk x khác 0;2
P = \(\dfrac{1}{x\left(x-2\right)}.\left(\dfrac{x^2+4}{x}-4\right)+1\)
= \(\dfrac{1}{x\left(x-2\right)}.\dfrac{x^2-4x+4}{x}+1\)
= \(\dfrac{1}{x\left(x-2\right)}.\dfrac{\left(x-2\right)^2}{x}+1\)
= \(\dfrac{x-2}{x^2}+1\)
= \(\dfrac{x^2+x-2}{x^2}\)
b) Để \(\left|2+x\right|=1\)
<=> \(\left[{}\begin{matrix}2+x=1< =>x=-1\left(tm\right)\\2+x=-1< =>x=-3\left(tm\right)\end{matrix}\right.\)
TH1: x = -1
Thay x = -1 vào P, ta có:
\(P=\dfrac{\left(-1\right)^2-1-2}{\left(-1\right)^2}=-2\)
TH2: x = -3
Thay x = -3 vào P, ta có:
\(P=\dfrac{\left(-3\right)^2-3-2}{\left(-3\right)^2}=\dfrac{4}{9}\)
c) P = \(1+\dfrac{x-2}{x^2}\)
Xét \(\dfrac{x^2}{x-2}=\dfrac{\left(x-2\right)^2+4\left(x-2\right)+4}{x-2}\)
= \(\left(x-2\right)+\dfrac{4}{x-2}+4\)
Áp dụng bdt co-si, ta có:
\(\left(x-2\right)+\dfrac{4}{x-2}\ge2\sqrt{\left(x-2\right)\dfrac{4}{x-2}}=4\)
<=> \(\dfrac{x^2}{x-2}\ge4+4=8\)
<=> \(\dfrac{x-2}{x^2}\le\dfrac{1}{8}\)
<=> A \(\le\dfrac{9}{8}\)
Dấu "=" <=> x = 4
\(-3x^2+8x-1=\left(-3\right)\left(x^2-\frac{8}{3}x+\frac{1}{3}\right)=\left(-3\right)\left[\left(x^2-2.\frac{4}{3}.x+\frac{16}{9}\right)-\frac{13}{9}\right]\)
\(=\left(-3\right)\left[\left(x-\frac{4}{3}\right)^2-\frac{13}{9}\right]=\frac{13}{3}-3\left(x-\frac{4}{3}\right)^2\le\frac{13}{3}\)
Biểu thức đạt GTLN là 13/3 khi \(\left(x-\frac{4}{3}\right)^2=0\Leftrightarrow x-\frac{4}{3}=0\Leftrightarrow x=\frac{4}{3}\)
a: \(M=\dfrac{x^2-3x+2x^2+6x-3x^2-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)
\(-3x^4+12x^2+1=-3\left(x^4-4x^2+4\right)+12+1\)
\(=13-3\left(x^2-2\right)^2\le13\)
Đạt GTLN khi \(x=\sqrt{2}\)
tui nghĩ bài này phải là kiến thức lop9, thử xem sao, mong a2 xem giúp em
đặt t = x2có -3(t2 - 4t +4) +4 +1
GTLN = 5