Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
We have \(P=\frac{5x-7}{2\left(x-1\right)}-\frac{4x}{x^2-1}+\frac{9-3x}{2\left(x-1\right)}\)
\(\Rightarrow P=\frac{5x-7+9-3x}{2\left(x-1\right)}-\frac{4x}{x^2-1}\)
\(\Rightarrow P=\frac{2x+2}{2\left(x-1\right)}-\frac{4x}{x^2-1}\)
\(\Rightarrow P=\frac{x+1}{x-1}-\frac{4x}{x^2-1}=\frac{\left(x+1\right)^2}{x^2-1}-\frac{4x}{x^2-1}\)
\(=\frac{x^2+2x+1}{x^2-1}-\frac{4x}{x^2-1}=\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}=\frac{x-1}{x+1}\)
\(P\inℤ\Leftrightarrow x-1⋮x+1\)
\(\Rightarrow\left(x+1\right)-2⋮x+1\Rightarrow2⋮x+1\)
\(\Rightarrow x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Prints:
\(x+1\) | \(1\) | \(-1\) | \(2\) | \(-2\) |
\(x\) | \(0\) | \(-2\) | \(1\) | \(-3\) |
So \(x\in\left\{0;-2;1;-3\right\}\)
\(\left(3x-1\right)\left(4x-1\right)\left(5x-1\right)\left(6x-1\right)=\left[\left(3x-1\right)\left(6x-1\right)\right]\left[\left(4x-1\right)\left(5x-1\right)\right]\)
\(=\left[18x^2-9x+1\right]\left[20x^2-9x+1\right]\)=120.
Do x thuộc Z => 2 cái trong ngoặc thuộc Ư(120)
Đồng thời chúng đồng âm và đồng dương, Tất nhiên là cùng chẵn
( 3x -1 ) ( 4x -1 ) ( 5x -1 ) ( 6x -1 ) = 120
\(pt\Leftrightarrow\left(18x^2-9x+1\right)\left(20x^2-9x+1\right)=120\)
Đặt \(t=19x^2-9x+1\left(t>0\right)\) pt trở thành
\(\left(t-1\right)\left(t+1\right)=120\)
\(\Rightarrow t^2-1=120\)
\(\Rightarrow t^2=121\rightarrow t=11\) (vì t>0)
Với t=11 ta có:
\(19x^2-9x+1=11\)
\(\Rightarrow19x^2-9x-10=0\)
\(\Rightarrow19x^2+10x-19x-10=0\)
\(\Rightarrow x\left(19x+10\right)-\left(19x+10\right)=0\)
\(\Rightarrow\left(x-1\right)\left(19x+10\right)=0\)
Vì x nguyên suy ra \(x=1\)
mọi người giúp mình giải bài này nha . yêu các bạn nhiều nhiều
1.
\(A=\frac{2x^3+x^2+2x+4}{2x+1}=\frac{x^2(2x+1)+(2x+1)+3}{2x+1}=x^2+1+\frac{3}{2x+1}\)
Với $x$ nguyên, để $A$ nguyên thì $3\vdots 2x+1$
$\Rightarrow 2x+1\in \left\{1; -1; 3; -3\right\}$
$\Rightarrow x\in \left\{0; -1; 1; -2\right\}$
2.
\(B=\frac{3x^2-8x+1}{x-3}=\frac{3x(x-3)+x+1}{x-3}=\frac{3x(x-3)+(x-3)+4}{x-3}=3x+1+\frac{4}{x-3}\)
Với $x$ nguyên, để $B$ nguyên thì $4\vdots x-3$
$\Rightarrow x-3\in \left\{\pm 1; \pm 2; \pm 4\right\}$
$\Rightarrow x\in \left\{2; 4; 5; 1; 7; -1\right\}$
a)\(f\left(x\right)=2x^2-x-3+5=\left(x+1\right)\left(2x-3\right)+5\)
Để \(f\left(x\right)⋮g\left(x\right)\Leftrightarrow\left(x+1\right)\left(2x-3\right)+5⋮\left(x+1\right)\)
\(\Leftrightarrow5⋮\left(x+1\right)\)
mà \(x+1\in Z\Rightarrow x+1\in U\left(5\right)=\left\{-1;1;5;-5\right\}\)
\(\Leftrightarrow x\in\left\{-2;0;4;-6\right\}\)
Vậy...
b) \(f\left(x\right)=3x^2-4x+6=\left(3x^2-4x+1\right)+5=\left(3x-1\right)\left(x-1\right)+5\)
Để \(f\left(x\right)⋮g\left(x\right)\Leftrightarrow\left(3x-1\right)\left(x-1\right)+5⋮\left(3x-1\right)\)
\(\Leftrightarrow5⋮\left(3x-1\right)\) mà \(3x-1\in Z\Rightarrow3x-1\in U\left(5\right)=\left\{-1;1;5;-5\right\}\)
\(\Leftrightarrow x\in\left\{0;\dfrac{2}{3};2;-\dfrac{4}{3}\right\}\) mà x nguyên\(\Rightarrow x\in\left\{0;2\right\}\)
Vậy...
c)\(f\left(x\right)=\left(-2x^3-7x^2-5x+2\right)+3\)\(=\left(-2x^3-4x^2-3x^2-6x+x+2\right)+3\)\(=\left[-2x^2\left(x+2\right)-3x\left(x+2\right)+\left(x+2\right)\right]+3\)
\(=\left(x+2\right)\left(-2x^2-3x+1\right)+3\)
Làm tương tự như trên \(\Rightarrow x+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Leftrightarrow x\in\left\{-5;-3;-1;1\right\}\)
Vậy...
d)\(f\left(x\right)=x^3-3x^2-4x+3=x\left(x^2-3x-4\right)+3=x\left(x+1\right)\left(x-4\right)+3\)
Làm tương tự như trên \(\Rightarrow x+1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow x\in\left\{-4;-2;0;2\right\}\)
Vậy...
Cho P = 3.(4x-11)+5x^2.(x-1)-4x.(3x+9)+x.(5x-5x^2)
a) Rút gọn P
b)Tính P khi |x| = 2
c) Tìm x để P= 207
a)
\(P=12x-33+5x^3-5x^2-12x^2-36x+5x^2-5x^3\)
\(P=-24x-33-12x^2\)
b) |x| = 2 => x= -2 hoặc x = 2
ta có
\(P_{\left(2\right)}=-24.2-33-12.2^2=-129\)
\(P_{\left(-2\right)}=-24.\left(-2\right)-33-12.\left(-2\right)^2=-33\)
c) để P = 207 thì -48x-33-12x2 = 207
\(< =>-24x-33-12x^2-207=0\)
\(< =>-12x^2-24x-240=0\)
\(< =>-12\left(x^2+2x+20\right)=0\)
\(< =>x^2+2x+20=0\)
\(< =>x^2+2x+1+19=0\)
\(< =>\left(x+1\right)^2+19=0\)
vì (x+1)2 luôn lớn hơn hoặc bằng 0 với mọi x nên \(\left(x+1\right)^2+19>0\)
=> phương trình vô nghiệm
vậy không có giá trị nào của x đê P = 207
Bài 1:
a) Ta có: \(P=1+\dfrac{3}{x^2+5x+6}:\left(\dfrac{8x^2}{4x^3-8x^2}-\dfrac{3x}{3x^2-12}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{8x^2}{4x^2\left(x-2\right)}-\dfrac{3x}{3\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{4}{x-2}-\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\dfrac{4\left(x+2\right)-x-\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}\cdot\dfrac{\left(x-2\right)\left(x+2\right)}{4x+8-x-x+2}\)
\(=1+3\cdot\dfrac{\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)
\(=1+\dfrac{3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)
\(=\dfrac{\left(x+3\right)\left(2x+10\right)+3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)
\(=\dfrac{2x^2+10x+6x+30+3x-6}{\left(x+3\right)\left(2x+10\right)}\)
\(=\dfrac{2x^2+19x-6}{\left(x+3\right)\left(2x+10\right)}\)
- Chia cả hai vế cho 5^x:
pt <=> (3/5)^x + (4/5)^x = 1
- Ta nhận thấy x=2 là nghiệm của phương trình
(3/5)^2 + (4/5)^2 = 1
- Ta phải chứng minh x=2 là nghiệm duy nhất của phương trình
+ với x>2: (3/5)^x < (3/5)^2 (do 3/5 <1)
(4/5)^x < (4/5)^2 (do 4/5<1)
----------------------------------------...
Cộng 2 vế: (3/5)^x + (4/5)^x < (3/5)^2 + (4/5)^2 = 1 (trái gt)
=> Phương trình không có nghiệm khi x>2.
+ Tương tự với x<2, phương trình không có nghiệm khi x<2.
- Vậy phương trình có nghiệm duy nhất x=2.
mình copy trên yahoo hỏi đáp đó