K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2016

Bài 1:
Theo đề bài ta có: \(x\ge100\)

\(\Rightarrow\left|x-1\right|+\left|x-2\right|+...+\left|x-100\right|=x-1+x-2+...+x-100=6050\)

Ta có: \(x-1+x-2+...+x-100=6050\)

\(\Rightarrow\left(x+x+...+x\right)-\left(1+2+...+100\right)=6050\)

\(\Rightarrow100x-5050=6050\)

\(\Rightarrow100x=11100\)

\(\Rightarrow x=111\)

Vậy \(x=111\)

 

13 tháng 11 2016

giup voi

 

19 tháng 11 2018

A(2010)=x^2010 - 2009x^2009 - 2009x^2008 - 2009x^2007 -...- 2009x + 1

ta có: 2010-1=2009 --> x-1=2009

thay x-1=2009 vào đa thức A(2010) ta được:

A(2010)=x^2010 - x^2009(x-1) - x^2008(x-1) - x^2007(x-1) -...- x(x-1) + 1

=x^2010 - x^2010 + x^2009 - x^2009 + x^2008 - x^2008 + x^2007 -...- x^2 + x + 1 

= x + 1 

thay x=2010 vao x+1 ta được:

2010+1=2011

vậy A(2010)=2011

 

7 tháng 5 2016

x=2010

7 tháng 5 2016

Chia 4 khoảng trên trục số rồi giải

14 tháng 1 2018

c, C=|x-1|+|x-2|+...+|x-100|=(|x-1|+|100-x|)+(|x-2|+|99-x|)+...+(|x-50|+|56-x|) \(\ge\) |x-1+100-x|+|x-2+99-x|+...+|x-50+56-x|=99+97+...+1 = 2500

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-1\right)\left(100-x\right)\ge0\\\left(x-2\right)\left(99-x\right)\ge0.....\\\left(x-50\right)\left(56-x\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}1\le x\le100\\2\le x\le99....\\50\le x\le56\end{cases}\Leftrightarrow}50\le x\le56}\)

Vậy MinC = 2500 khi 50 =< x =< 56

14 tháng 1 2018

a. A=|x-2011|+|x-2012|=|x-2011|+|2012-x| \(\ge\) |x-2011+2012-x| = 1

Dấu "=" xảy ra khi \(\left(x-2011\right)\left(2012-x\right)\ge0\Leftrightarrow2011\le x\le2012\)

Vậy MinA = 1 khi 2011 =< x =< 2012

b, B=|x-2010|+|x-2011|+|x-2012|=(|x-2010|+|2012-x|) + |x-2011| 

Ta có: \(\left|x-2010\right|+\left|2012-x\right|\ge\left|x-2010+2012-x\right|=0\)

Mà \(\left|x-2011\right|\ge0\forall x\)

\(\Rightarrow B=\left(\left|x-2010\right|+\left|2012-x\right|\right)+\left|x-2011\right|\ge2+0=2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-2010\right)\left(2012-x\right)\ge0\\\left|x-2011\right|=0\end{cases}\Rightarrow\hept{\begin{cases}2010\le x\le2012\\x=2011\end{cases}\Rightarrow}x=2011}\)

Vậy MinB = 2 khi x = 2011

Câu c để nghĩ 

2 tháng 9 2017

Bài : 5 

a) Ta có : A = 3 + |4 - x|

Vì : \(\left|4-x\right|\ge0\forall x\)

Nên : A = 3 + |4 - x| \(\ge3\forall x\)

Vậy Amin = 3 khi x = 4

b) Ta có : B = 5|1 - 4x| - 1 

Vì  \(\text{5|1 - 4x|}\ge0\forall x\)

Nên : B = 5|1 - 4x| - 1 \(\ge-1\forall x\)

Vậy Bmin = -1 khi x = 1/4

2 tháng 9 2017

a)\(\left|2x-3\right|=6\)

\(\Rightarrow\orbr{\begin{cases}2x-3=6\\2x-3=-6\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}...\\...\end{cases}}\)

b)\(2.\left|3x+1\right|=5\)

\(\left|3x+1\right|=2,5\)

\(\Rightarrow\orbr{\begin{cases}3x+1=2,5\\3x+1=-2,5\end{cases}}\Rightarrow\orbr{\begin{cases}...\\...\end{cases}}\)

c)\(7,5-3\left|5-2x\right|=-4,5\)

\(3\left|5-2x\right|=12\)

\(\left|5-2x\right|=4\)

\(...\)