Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x+7}{x+4}=\frac{2}{5}\)
\(\Rightarrow5\left(x+7\right)=2\left(x+4\right)\)
\(\Rightarrow5x+35-2x-8=0\)
\(\Rightarrow3x=-27\)
\(\Rightarrow x=-9\)
b) \(\frac{2x-3}{2}=\frac{50}{2x-3}\)
\(\Rightarrow\left(2x-3\right)^2=100\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x-3=10\\2x-3=-10\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{13}{2}\\x=-\frac{7}{2}\end{array}\right.\)
c) \(\frac{x+1}{x-3}=\frac{x+3}{x+2}\)
\(\Rightarrow\left(x+1\right)\left(x+2\right)=\left(x-3\right)\left(x+3\right)\)
\(\Leftrightarrow x^2+3x+2=x^2-9\)
\(\Leftrightarrow3x=-11\)
\(\Leftrightarrow x=-\frac{11}{3}\)
b) \(\frac{x-1}{2}=\frac{2x-2}{4}\)
\(\frac{y-2}{3}=\frac{3y-6}{9}\)
\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z+3-2-6}{9}=\frac{50+3-2-6}{9}=\frac{45}{9}=5\)=>x-1=5.2=10
=>x=11
y-2=5.3=15
=>y=17
z-3=5.4=20
=>z=23
Vậy (x;y;z)=(11;17;23)
Áp dụng t/c của dãy tỉ số bằng nhau:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
\(=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+x-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)(vì x+y+z khác 0).Do đó x+y+z = 0.5
Thay kq này vào bài ta được:
\(\frac{0,5-x+1}{x}=\frac{0,5-y+2}{y}=\frac{0,5-z-3}{z}=2\)
Tức là : \(\frac{1,5-x}{x}=\frac{2,5-y}{y}=\frac{-2,5-z}{z}=2\)
Vậy \(x=\frac{1}{2};y=\frac{5}{6};z=\frac{-5}{6}\)
Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
\(=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}=\frac{2x+3y-z-2-6+3}{9}\)
\(=\frac{50-5}{9}=\frac{45}{9}=5\)
\(\Rightarrow\begin{cases}x-1=5.2=10\\y-2=5.3=15\\z-3=5,4=20\end{cases}\)\(\Rightarrow\begin{cases}x=11\\y=17\\z=23\end{cases}\)
Vậy x = 11; y = 17; z = 23
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-\left(2+6-3\right)}{9}\)
\(=\frac{50-5}{9}=\frac{45}{9}=5\)
+) \(\frac{x-1}{2}=5\Rightarrow x-1=10\Rightarrow x=11\)
+) \(\frac{y-2}{3}=5\Rightarrow y-2=15\Rightarrow y=17\)
+) \(\frac{z-3}{4}=5\Rightarrow z-3=20\Rightarrow z=23\)
Vậy bộ số \(\left(x,y,z\right)\) là \(\left(11,17,23\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{\left(x-1\right)-\left(y-2\right)+\left(z-3\right)}{2-3+4}\)\(=\frac{x-1-y+2+z-3}{3}=\frac{50-2}{3}=\frac{48}{3}=16\)
\(\Rightarrow\hept{\begin{cases}x=16.2+1=33\\y=16.3+2=50\\z=16.4+3=67\end{cases}}\)
Vậy ........................
\(\Leftrightarrow\left(\dfrac{2}{3}x-1\right)^3\cdot\dfrac{1}{50}=\dfrac{75}{2}-24=\dfrac{27}{2}\)
\(\Leftrightarrow\left(\dfrac{2}{3}x-1\right)^3=\dfrac{27}{2}:\dfrac{1}{50}=675\)
\(\Leftrightarrow x\cdot\dfrac{2}{3}-1=3\sqrt[3]{25}\)
\(\Leftrightarrow x\cdot\dfrac{2}{3}=3\sqrt[3]{25}+1\)
\(\Leftrightarrow x=\dfrac{3\left(3\sqrt[3]{25}+1\right)}{2}\)
Nhanh nha mọi người
X=0 hết