Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\Leftrightarrow\frac{59-x}{41}+1+\frac{57-x}{43}+1+\frac{55-x}{45}+1+\frac{51-x}{49}+1=-5+5\)
\(\Leftrightarrow\frac{100-x}{41}+\frac{100-x}{43}+\frac{100-x}{45}+\frac{100-x}{47}+\frac{100-x}{49}=0\)
\(\Leftrightarrow\left(100-x\right)\left(\frac{1}{41}+\frac{1}{43}+\frac{1}{45}+\frac{1}{47}+\frac{1}{49}\right)=0\)
\(\Leftrightarrow x-100=0\Leftrightarrow x=100\)
2. \(\Leftrightarrow\frac{x-5}{1990}+1+\frac{x-15}{1980}+1+\frac{x-25}{1970}=\frac{x-1990}{5}+1+\frac{x-1980}{15}+1+\frac{x-1970}{25}+1\)
\(\Leftrightarrow\frac{x-1995}{1990}+\frac{x-1995}{1980}+\frac{x-1995}{1970}=\frac{x-1995}{5}+\frac{x-1995}{15}+\frac{x-1995}{25}\)
\(\Leftrightarrow\frac{x-1995}{1990}+\frac{x-1995}{1980}+\frac{x-1995}{1970}-\frac{x-1995}{5}-\frac{x-1995}{15}-\frac{x-1995}{25}=0\)
\(\Leftrightarrow\left(x-1995\right)\left(\frac{1}{1990}+\frac{1}{1980}+\frac{1}{1970}-\frac{1}{5}-\frac{1}{15}-\frac{1}{25}\right)=0\)
\(\Leftrightarrow x-1995=0\Leftrightarrow x=1995\)
a) \(\frac{x+1}{99}+\frac{x+2}{98}=\frac{x+3}{97}+\frac{x+4}{96}\)
\(\Rightarrow\frac{x+1}{99}+1+\frac{x+2}{98}+1=\frac{x+3}{97}+1+\frac{x+4}{96}+1\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}-\frac{x+100}{97}-\frac{x+100}{96}=0\)
\(\Rightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\right)=0\)
Vì 1/99 + 1/98 - 1/97 - 1/96 khác 0
=> x + 100 = 0 => x = -100
b) \(\frac{x-3}{47}+\frac{x-2}{48}=\frac{x-1}{49}+1\)
\(\Rightarrow\frac{x-3}{47}-1+\frac{x-2}{48}-1=\frac{x-1}{49}+1-2\)
\(\Rightarrow\frac{x-50}{47}+\frac{x-50}{48}-\frac{x-50}{49}=0\)
\(\Rightarrow\left(x-50\right)\left(\frac{1}{47}+\frac{1}{48}-\frac{1}{49}\right)=0\)
Vì 1/47 + 1/48 - 1/49 khác 0
Nên x -50 = 0 => x = 50
c) Tìm các số nguyên x,y thỏa mãn
*\(2xy+6x-y=10\)
\(\Leftrightarrow\left(2xy+6x\right)-y-3=10-3=7\)
\(\Leftrightarrow2x\left(y+3\right)-\left(y+3\right)=7\)
\(\Leftrightarrow\left(y+3\right)\left(2x-1\right)=7\)
Lập bảng xét ước nữa là xong.
* \(xy+4x-3y=1\Leftrightarrow\left(xy+4x\right)-3y-12=1-12=-11\)
\(\Leftrightarrow x\left(y+4\right)-\left(3y+12\right)=-11\)
\(\Leftrightarrow x\left(y+4\right)-3\left(y+4\right)=-11\)
\(\Leftrightarrow\left(x-3\right)\left(y+4\right)=-11\)
Lập bảng xét ước nữa là xong.
Mới nhìn vào thấy bài toán hay hay lạ kì.
Thêm một vào bớt một ra
Tức thì bài toán trở nên dễ dàng:
\(\frac{x}{50}-\frac{x-1}{51}=\frac{x+2}{48}-\frac{x-3}{53}\)
\(\Leftrightarrow\frac{x}{50}+1-\frac{x-1}{51}-1=\frac{x+2}{48}+1-\frac{x-3}{53}-1\)
\(\Leftrightarrow\left(\frac{x}{50}+1\right)-\left(\frac{x-1}{51}+1\right)=\left(\frac{x+2}{48}+1\right)-\left(\frac{x-3}{53}+1\right)\)
\(\Leftrightarrow\frac{x+50}{50}-\frac{x+50}{51}=\frac{x+50}{48}-\frac{x+50}{53}\)
\(\Leftrightarrow\frac{x+50}{50}-\frac{x+50}{51}-\frac{x+50}{48}+\frac{x+50}{53}=0\)
\(\Leftrightarrow\left(x+50\right)\left(\frac{1}{50}-\frac{1}{51}-\frac{1}{48}+\frac{1}{53}\right)=0\)
Dễ thấy \(\left(\frac{1}{50}-\frac{1}{51}-\frac{1}{48}+\frac{1}{53}\right)\ne0\)
Do đó x + 50 = 0 hay x = -50
#)Giải :
\(2x-3=x+\frac{1}{2}\)
\(\Leftrightarrow2x-3-x+\frac{1}{2}=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=0\\x+\frac{1}{2}=0\end{cases}}\Rightarrow\orbr{\begin{cases}2x=3\\x=-\frac{1}{2}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-\frac{1}{2}\end{cases}}}\)
a) \(2x-3=x+\frac{1}{2}\)
\(\Leftrightarrow2x-x=\frac{1}{2}+3\)
\(\Leftrightarrow x=\frac{7}{2}\)
Vậy...
b) \(4x-\left(2x+1\right)=3-\frac{1}{3}+x\)
\(\Leftrightarrow4x-2x-1=3-\frac{1}{3}+x\)
\(\Leftrightarrow4x-2x-x=3-\frac{1}{3}+1\)
\(\Leftrightarrow x=\frac{11}{3}\)
Vậy ...
c) \(2x-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-...-\frac{1}{49.50}=7-\frac{1}{50}+x\)
\(\Leftrightarrow2x-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{49.50}\right)=\frac{349}{50}+x\)
\(\Leftrightarrow2x-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\right)=\frac{349}{50}+x\)
\(\Leftrightarrow2x-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)=\frac{349}{50}+x\)
\(\Leftrightarrow2x-\left(1-\frac{1}{50}\right)=\frac{349}{50}+x\)
\(\Leftrightarrow2x-\frac{49}{50}=\frac{349}{50}+x\)
\(\Leftrightarrow2x-x=\frac{349}{50}+\frac{49}{50}\)
\(\Leftrightarrow x=\frac{199}{25}\)
Vậy ...