K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Y
12 tháng 5 2019

\(\Leftrightarrow\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{\left(5x+1\right)\left(5x+3\right)}\right)=\frac{11}{23}\)

\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{5x+1}-\frac{1}{5x+3}\right)=\frac{11}{23}\)

\(\Leftrightarrow1-\frac{1}{5x+3}=\frac{22}{23}\)

\(\Leftrightarrow\frac{1}{5x+3}=\frac{1}{23}\)

\(\Leftrightarrow5x+3=23\Leftrightarrow x=4\) ( TM )

12 tháng 5 2019

\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{\left(5x+1\right).\left(5x+3\right)}=\frac{11}{23}\)

\(\Rightarrow\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left(5x+1\right)\left(5x+3\right)}\right)=\frac{11}{23}\)

\(\Rightarrow\frac{1}{2}\left(1-\frac{1}{3}+...+\frac{1}{\left(5x+1\right)}-\frac{1}{\left(5x+3\right)}\right)=\frac{11}{23}\)

\(\Rightarrow1-\frac{1}{\left(5x+3\right)}=\frac{11}{23}:\frac{1}{2}\)

\(\Rightarrow\frac{1}{5x+3}=\frac{1}{23}\)

\(\Rightarrow5x+3=23\)

\(\Rightarrow5x=23-3\)

\(\Rightarrow x=20:5\)

\(\Rightarrow x=4\)

18 tháng 3 2016

Gọi \(A=\frac{1005}{2011}\)

A=1/3 + 1/3.5 + 1/5.7 +...............+1/x.(x+2)

A=1/1.3 + 1/3.5 + 1/5.7 +...............+1/x.(x+2)

A . 2=2/1.3 + 2/3.5 + 2/5.7 +......................+2/x.(x+2)

A . 2=1/1-1/3+1/3-1/5+1/5-1/7+..............+1/x-1/x+2

A . 2=1/1+(1/3-1/3)+(1/5-1/5)+..............+(1/x-1/x)-1/x+2

A . 2=1/1-1/x+2

Suy gia:1005/2011 . 2=1/1-1/x+2

             2010/2011    =1/1-1/x+2

             1/x+2           =1/1-2010/2011

              1/x+2          =1/2011

Suy gia:x+2=2011

            x    =2011-2

            x    =2009

15 tháng 5 2017

Có:

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{x.\left(x+2\right)}=\dfrac{5}{11}\)

\(\Rightarrow\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+2}\right)=\dfrac{5}{11}\)

\(\Rightarrow\dfrac{1}{2}.\left(1-0-0-0...-0-\dfrac{1}{x+2}\right)=\dfrac{5}{11}\)

\(\Rightarrow\dfrac{1}{2}.\left(1-\dfrac{1}{x+2}\right)=\dfrac{5}{11}\)

\(\Rightarrow1-\dfrac{1}{x+2}=\dfrac{5}{11}:\dfrac{1}{2}=\dfrac{10}{11}\)

\(\Rightarrow\dfrac{1}{x+2}=1-\dfrac{10}{11}\)

\(\Rightarrow\dfrac{1}{x+2}=\dfrac{1}{11}\)

\(\Rightarrow x+2=11\)

\(\Rightarrow x=11-2=9\)

Vậy x = 9.

Chúc bạn học tốt!ok

15 tháng 5 2017

1/1.3 + 1/3.5 + 1/5.7 + ... +1/x.(x+2)

= 1/2.(1/1 - 1/3) + 1/2.(1/3 - 1/5) + 1/2.(1/5 - 1/7) + ... + 1/2.(1/x -1/x+2)

= 1/2.(1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/x - 1/x+2 )

= 1/2.(1/1 - 0 - 1/x+2 )

= 1/2 . ( 1/1 - 1/x+2 )

= 1/2 . ( x+2/x+2 - 1/x+2 )

= 1/2 . x+1/x+2

Mà 1/1.3 + 1/3.5 + 1/5.7 + ... +1/x.(x+2) = 5/11

=> 1/2 . x+1/x+2 = 5/11

=> x+1/x+2 = 5/11 : 1/2

=> x+1/x+2 = 10/11

=> x+1/x+2-1 = 10/11-1

=> x+1/x+1 = 10/10

=> x + 1 = 10

=> x = 10 - 1

=> x = 9

Vậy x = 9

26 tháng 4 2015

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{20}{41}\)
\(\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{x\left(x+2\right)}\right)=\frac{20}{41}\)
\(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(\frac{1}{2}\left(1-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(\frac{1}{2}.\frac{x+1}{x+2}=\frac{20}{41}\)
\(\frac{x+1}{x+2}=\frac{20}{41}:\frac{1}{2}\)
\(\frac{x+1}{x+2}=\frac{40}{41}\)
\(x+1=40 \)
\(x=40-1\)
\(x=39\)
Đúng thì ****

30 tháng 11 2018

Lương Hồ Khánh Duy trả lời đúng nhưng đúng cảu bài khác

Ở đây, câu hỏi ghi x+1 bn ghi x+2

6 tháng 5 2022

\(P=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2021.2023}\)

\(2P=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{3}{5.7}+...+\dfrac{2}{2021.2023}\)

\(2P=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\)

\(2P=\dfrac{1}{1}-\dfrac{1}{2023}\)

\(P=\dfrac{2022}{2023}:2\)

\(P=\dfrac{1011}{2023}\)

6 tháng 5 2022

\(=>P=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\)

\(P=1-\dfrac{1}{2023}=\dfrac{2023}{2023}-\dfrac{1}{2023}=\dfrac{2022}{2023}\)

\(x.P=\dfrac{2022}{2023}=>x=P:\dfrac{2022}{2023}=\dfrac{2022}{2023}:\dfrac{2022}{2023}=1\)

Ta có: \(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{x\left(x+2\right)}=\dfrac{20}{41}\)

\(\Leftrightarrow\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{x\left(x+2\right)}=\dfrac{40}{41}\)

\(\Leftrightarrow1-\dfrac{2}{x+2}=\dfrac{40}{41}\)

\(\Leftrightarrow\dfrac{2}{x+2}=\dfrac{1}{41}\)

Suy ra: x+2=82

hay x=80

2 tháng 8 2017

Đề bị sai 

2 tháng 8 2017

Sửa đề . \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{n\left(n+2\right)}=\frac{71}{216}\)

\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+2}\right)=\frac{71}{216}\)

\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{n+2}\right)=\frac{71}{216}\)

\(\Leftrightarrow\frac{1}{n+2}=1-\frac{71}{216}\div\frac{1}{2}\)

\(\Leftrightarrow\frac{1}{n+2}=\frac{37}{108}\)

\(\Leftrightarrow x=\frac{34}{37}\Rightarrow\text{(đề sai) }\)

25 tháng 3 2016

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x.\left(x+2\right)}=\frac{5}{11}\)

\(\Rightarrow\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{5}{11}\)

\(\Rightarrow\frac{1}{2}\left(1-\frac{1}{x+2}\right)=\frac{5}{11}\Rightarrow1-\frac{1}{x+2}=\frac{5}{11}\div\frac{1}{2}=\frac{10}{11}\)

\(\Rightarrow\frac{1}{x+2}=1-\frac{10}{11}=\frac{1}{11}\Rightarrow x+2=11\Rightarrow x=11-2=9\)

\(\frac{1}{1.3}+\frac{1}{3.5}+......+\frac{1}{x+\left(x+2\right)}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+........+\frac{1}{x}-\frac{1}{x+2}\)

\(=1-\frac{1}{x+2}=\frac{5}{11}\)

\(\frac{1}{x+2}=1-\frac{5}{11}=\frac{6}{11}\)

=> không có kết quả