K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
LT
0
DK
0
ND
0
VB
1
26 tháng 3 2019
Đặt \(x^2+2x+20=a^2\left(a\ge0\right)\)
\(\Leftrightarrow x^2+2x+1+19=a^2\)
\(\Leftrightarrow\left(x+1\right)^2+19=a^2\)
\(\Leftrightarrow a^2-\left(x+1\right)^2=19\)
\(\Leftrightarrow\left(a+x+1\right)\left(a-x-1\right)=19=19.1\)
Vì \(a\ge0;x\ge0\)nên\(\left(a+x+1\right)\ge\left(a-x-1\right)\)
Suy ra:\(\hept{\begin{cases}a+x+1=19\\a-x-1=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+x=18\\a-x=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=10\\x=8\end{cases}}\)(Phần này mình làm nhanh)
Vậy khi x=8 thì \(x^2+2x+20\)là số chính phương
Đặt \(x^2+x+1991=a^2< =>4x^2+4x+7964=4a^2< =>\left(2x+1\right)^2+7963=\left(2a\right)^2.\)
\(< =>\left(2x+1\right)^2-\left(2a\right)^2=7963< =>\left(2x+1-2a\right)\left(2x+1+2a\right)=-7963\)
xong rồi tự tách nghiệm tìm tiếp nha! -7963 chỉ có 2 cặp nghiệm (-1,7963);(-7963:1) thôi