K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2016

Để biểu thức xác định thì

\(1-2x>0\Rightarrow-2x>-1\Rightarrow x< \frac{1}{2}\)

17 tháng 6 2016

a) A xác định \(\Leftrightarrow\hept{\begin{cases}x^2-2x\ge0\\x-\sqrt{x^2-2x}\ne0\\x+\sqrt{x^2-2x}\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x< 0\\x\ge2\end{cases}}\)

b) \(A=\frac{x+\sqrt{x^2-2x}}{x-\sqrt{x^2-2x}}-\frac{x-\sqrt{x^2-2x}}{x+\sqrt{x^2-2x}}=\frac{\left(x^2+x^2-2x+2x\sqrt{x^2-2x}\right)-\left(x^2+x^2-2x-2x\sqrt{x^2-2x}\right)}{x^2-\left(x^2-2x\right)}\)\(=\frac{4x\sqrt{x^2-2x}}{2x}=2\sqrt{x^2-2x}\)

c) \(A< 2\Leftrightarrow2\sqrt{x^2-2x}< 2\Leftrightarrow x^2-2x< 1\Leftrightarrow x^2-2x-1< 0\Leftrightarrow1-\sqrt{2}\le x\le1+\sqrt{2}\)

Kết hợp với điều kiện A xác định được : \(2\le x\le1+\sqrt{2}\) 

Vậy \(A< 2\Leftrightarrow2\le x\le1+\sqrt{2}\)

4 tháng 9 2016

Căn thức đã cho xác định khi 

     1-2x>0

<=>2x<1

<=>x<1/2

Vậy với x<1/2 thì căn thức đã cho xác định

8 tháng 10 2017

1.

a. ĐKXĐ : x lớn hơn hoặc bằng 1/2 

b. A\(\sqrt{2}\)\(\sqrt{2x+2\sqrt{2x-1}}-\sqrt{2x-2\sqrt{2x-1}}\)

\(\sqrt{2x-1+1+2\sqrt{2x-1}}-\sqrt{2x-1+1-2\sqrt{2x-1}}\)

=\(\sqrt{\left(\sqrt{2x-1}+1\right)^2}-\sqrt{\left(\sqrt{2x-1}-1\right)^2}\)

\(\sqrt{2x-1}+1-\left|\sqrt{2x-1}-1\right|\)

Nếu \(x\ge1thìA\sqrt{2}=\sqrt{2x-1}+1-\left(\sqrt{2x-1}-1\right)=2\)

\(\Rightarrow A=2\)

Nếu 1/2 \(\le x< 1thìA\sqrt{2}=\sqrt{2x-1}+1-\left(1-\sqrt{2x-1}\right)=2\sqrt{2x-1}\)

Do đó : A= \(\sqrt{4x-2}\)

Vậy ............

8 tháng 10 2017

2. 

a. \(x\ge2\)hoặc x<0

b. A= \(2\sqrt{x^2-2x}\)

c. A<2 \(\Leftrightarrow\)\(2\sqrt{x^2-2x}< 2\Leftrightarrow\sqrt{x^2-2x}< 1\Leftrightarrow x^2-2x< 1\Leftrightarrow\left(x-1\right)^2< 2\)

\(-\sqrt{2}< x-1< \sqrt{2}\Leftrightarrow1-\sqrt{2}< x< 1+\sqrt{2}\)

Kết hợp vs đk câu a , ta đc : \(1-\sqrt{2}< x< 0và2\le x< 1+\sqrt{2}\)

Vậy...........

16 tháng 6 2021

a) Biểu thức xác định `<=> (x+2)(x-1) >=0 <=>` \(\left\{{}\begin{matrix}x\ge1\\x\le-2\end{matrix}\right.\)

b) Biểu thức xác định `<=> (x-3)/(2x-1) >= 0 <=>` \(\left\{{}\begin{matrix}x\ge0\\x< \dfrac{1}{2}\end{matrix}\right.\)

c) Biểu thức xác định `<=> -x^2+2x-1 >= 0 <=> -(x-1)^2 >= 0 <=> x =1`

a) Ko dùng ngoặc nhọn vì không có số nào thỏa mãn \(-2\ge x\ge1\)

b) Biểu thức xác định \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-3\ge0\\2x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-3\le0\\2x-1< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge3\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le3\\x< \dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge3\\x< \dfrac{1}{2}\end{matrix}\right.\)