\(A=\frac{x+\sqrt{x^2-2x}}{x-\sqrt{x^2-2x}}-\frac{x-\sqrt{x^2-2x}}{x+\sqrt{x^2-2x}}\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2016

a) A xác định \(\Leftrightarrow\hept{\begin{cases}x^2-2x\ge0\\x-\sqrt{x^2-2x}\ne0\\x+\sqrt{x^2-2x}\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x< 0\\x\ge2\end{cases}}\)

b) \(A=\frac{x+\sqrt{x^2-2x}}{x-\sqrt{x^2-2x}}-\frac{x-\sqrt{x^2-2x}}{x+\sqrt{x^2-2x}}=\frac{\left(x^2+x^2-2x+2x\sqrt{x^2-2x}\right)-\left(x^2+x^2-2x-2x\sqrt{x^2-2x}\right)}{x^2-\left(x^2-2x\right)}\)\(=\frac{4x\sqrt{x^2-2x}}{2x}=2\sqrt{x^2-2x}\)

c) \(A< 2\Leftrightarrow2\sqrt{x^2-2x}< 2\Leftrightarrow x^2-2x< 1\Leftrightarrow x^2-2x-1< 0\Leftrightarrow1-\sqrt{2}\le x\le1+\sqrt{2}\)

Kết hợp với điều kiện A xác định được : \(2\le x\le1+\sqrt{2}\) 

Vậy \(A< 2\Leftrightarrow2\le x\le1+\sqrt{2}\)

28 tháng 7 2019

\(M=\frac{x+\sqrt{x^2-2x}}{x-\sqrt{x^2-2x}}-\frac{x-\sqrt{x^2-2x}}{x+\sqrt{x^2-2x}}\left(x< 0;x\ge2\right)\)

\(=\frac{\left(x+\sqrt{x^2-2x}\right)\left(x+\sqrt{x^2-2x}\right)}{x^2-\sqrt{x^2-2x}^2}-\frac{\left(x-\sqrt{x^2-2x}\right)\left(x-\sqrt{x^2-2x}\right)}{x^2-\sqrt{x^2-2x}^2}\)

\(=\frac{x^2+x\sqrt{x^2-2x}+x\sqrt{x^2-2x}+x^2-2x}{x^2-x^2-2x}-\frac{x^2-x\sqrt{x^2-2x}-x\sqrt{x^2-2x}+x^2-2x}{x^2-x^2-2x}\)

\(=\frac{2x^2+2x\sqrt{x^2-2x}-2x}{-2x}-\frac{2x^2-2\sqrt{x^2-2x}-2x}{-2x}\)

\(=\frac{2x^2+2x\sqrt{x^2-2x}-2x-2x^2+2x\sqrt{x^2-2x}+2x}{-2x}\)

\(=\frac{4x\sqrt{x^2-2x}}{-2x}=-2x\sqrt{x^2-2x}\)