Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(M=\dfrac{A}{B}\)
\(=\dfrac{x-3}{x+2}:\dfrac{-2}{x+2}\)
\(=\dfrac{x-3}{-2}\)
Để |M|=-M thì \(M\le0\)
\(\Leftrightarrow x\ge3\)
a: Ta có: \(A=\dfrac{1}{2}\)
\(\Leftrightarrow x+2=2x-6\)
\(\Leftrightarrow-x=-8\)
hay x=8
Thay x=8 vào B,ta được:
\(B=-\dfrac{2}{8+2}=-\dfrac{2}{10}=-\dfrac{1}{5}\)
Do \(x^2+3x+1\) là số chính phương nên \(x^2+3x+1=a^2\left(a\in Z\right)\)
\(\Leftrightarrow4x^2+12x+4=4a^2\)
\(\Leftrightarrow\left[\left(2x\right)^2+2.2x.3+3^2\right]-4a^2-5=0\)
\(\Leftrightarrow\left(2x+3\right)^2-\left(2a\right)^2=5\)
\(\Leftrightarrow\left(2x-2a+3\right)\left(2x+2a+3\right)=5\)
Do x;a nguyên nên \(2x-2a+3\) và \(2x+2a+3\) là ước của 5
\(Ư\left(5\right)=\left\{-5;-1;1;5\right\}\)
Với \(2x-2a+3=1\) thì \(2x+2a+3=5\) => \(\left(a;x\right)=\left(1;0\right)\) (TM)
Với \(2x-2a+3=5\) thì \(2x+2a+3=1\) => \(\left(a;x\right)=\left(-1;0\right)\) (TM)
Với \(2x-2a+3=-1\) thì \(2x+2a+3=-5\) => \(\left(a;x\right)=\left(-1;-3\right)\) (loại)
Với \(2x-2a+3=-5\) thì \(2x+2a+3=-1\) => \(\left(a;x\right)=\left(-3;-1\right)\) (loại)
Vậy \(x=0\)
1) a) Căn thức có nghĩa \(\Leftrightarrow4-2x\ge0\Leftrightarrow2x\le4\Leftrightarrow x\le2\)
b) Thay x = 2 vào biểu thức A, ta được: \(A=\sqrt{4-2.2}=\sqrt{0}=0\)
Thay x = 0 vào biểu thức A, ta được: \(A=\sqrt{4-2.0}=\sqrt{4}=2\)
Thay x = 1 vào biểu thức A, ta được: \(A=\sqrt{4-2.1}=\sqrt{2}\)
Thay x = -6 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-6\right)}=\sqrt{16}=4\)
Thay x = -10 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-10\right)}=\sqrt{24}=2\sqrt{6}\)
c) \(A=0\Leftrightarrow\sqrt{4-2x}=0\Leftrightarrow4-2x=0\Leftrightarrow x=2\)
\(A=5\Leftrightarrow\sqrt{4-2x}=5\Leftrightarrow4-2x=25\Leftrightarrow x=\frac{-21}{2}\)
\(A=10\Leftrightarrow\sqrt{4-2x}=10\Leftrightarrow4-2x=100\Leftrightarrow x=-48\)
a) \(P=\left(3-\dfrac{3}{\sqrt{x}-1}\right):\left(\dfrac{x+2}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\)
\(=\left(\dfrac{3\left(\sqrt{x}-1\right)-3}{\sqrt{x}-1}\right):\left[\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x+2}\right)}-\dfrac{\sqrt{x}}{\sqrt{x}+2}\right]\)
\(=\dfrac{3\sqrt{x}-3-3}{\sqrt{x}-1}:\dfrac{x+2-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{3\sqrt{x}-6}{\sqrt{x}-1}:\dfrac{x+2-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{3\sqrt{x}-6}{\sqrt{x}-1}:\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{3\sqrt{x}-6}{\sqrt{x}-1}:\dfrac{1}{\sqrt{x}-1}\)
\(=\dfrac{3\sqrt{x}-6}{\sqrt{x}-1}.\left(\sqrt{x}-1\right)\)
\(=3\sqrt{x}-6\)
b) \(P=\dfrac{4\sqrt{x}-1}{\sqrt{x}}\)
\(\Leftrightarrow3\sqrt{x}-6=\dfrac{4\sqrt{x}-1}{\sqrt{x}}\) (1)
ĐKXĐ: \(x>0\)
\(\left(1\right)\Leftrightarrow3x-6\sqrt{x}=4\sqrt{x}-1\)
\(\Leftrightarrow3x-6\sqrt{x}-4\sqrt{x}+1=0\)
\(\Leftrightarrow3x-10\sqrt{x}+1=0\) (2)
Đặt \(t=\sqrt{x}\ge0\)
\(\left(2\right)\Leftrightarrow3t^2-10t+1=0\)
\(\Delta'=25-4=22\)
Phương trình có hai nghiệm phân biệt:
\(t_1=\dfrac{5+\sqrt{22}}{3}\) (nhận)
\(t_2=\dfrac{5-\sqrt{22}}{3}\) (nhận)
Với \(t=\dfrac{5+\sqrt{22}}{3}\) \(\Leftrightarrow\sqrt{x}=\dfrac{5+\sqrt{22}}{3}\Leftrightarrow x=\dfrac{47+10\sqrt{22}}{9}\) (nhận)
Với \(t=\dfrac{5-\sqrt{22}}{3}\Leftrightarrow\sqrt{x}=\dfrac{5-\sqrt{22}}{3}\Leftrightarrow x=\dfrac{47-10\sqrt{22}}{9}\) (nhận)
Vậy \(x=\dfrac{47+10\sqrt{22}}{9};x=\dfrac{47-10\sqrt{22}}{9}\) thì \(P=\dfrac{4\sqrt{x}-1}{\sqrt{x}}\)
a: \(P=\dfrac{3\sqrt{x}-3-3}{\sqrt{x}-1}:\dfrac{x+2-x+\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{3\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}=3\sqrt{x}-6\)
b: P=(4căn x-1)/căn x
=>3x-6căn x-4căn x+1=0
=>3x-10căn x+1=0
=>x=(47+10căn 22)/9 hoặc x=(47-10căn 22)/9
Đề phải như này không bạn?
a) \(B=\sqrt{x^2-4x+4}-\sqrt{x^2+4x+4}\)
\(\Leftrightarrow B=\sqrt{\left(x-2\right)^2}-\sqrt{\left(x+2\right)^2}\)
\(\Leftrightarrow B=\left|x-2\right|-\left|x+2\right|\)
b) Thay B=-2 ta có |x-2|-|x+2|=-2
TH1: x-2-(x+2)=2
<=> x-2-x-2=2
<=> -4=2 (vô lí)
TH2: x-2+x+2=2
<=> 2x=2
<=> x=1 (thõa mãn)
TH3: -(x-2)-(x+2)=2
<=> -x-2-x-2=2
<=> -2x-4=2
<=> -2x=6
<=> x=-3 (TM)
TH4: -(x-2)+x+2=2
<=> -x-2+x+2=2
<=> 0=2 (vô lí)
Vậy x=-3 hoặc x=1 thì B=-2
a)Ta có: \(\Delta\)= m2 - 4(m - 1) = m2 - 4m + 4 = (m - 2)2 \(\geq\)0 với mọi m
Vậy: PT có 2 nghiệm x1, x2 với mọi m
b)Theo Vi-et: x1 + x2 = m và x1x2 = m - 1
Do đó: A = x12 + x22 - 6x1x2 = (x1 + x2)2 - 8x1x2 = m2 - 8(m - 1) = m2 - 8m + 8 = ( m2 - 8m + 16) - 8 = (m - 4)2 - 8 \(\geq\)- 8 với mọi m
đúng nhé
Vậy: GTNN của A là -8 <=> m = 4
Gọi \(a^2=x^2-4x+11\)
\(\Leftrightarrow a^2-\left(x^2-4x+11\right)=0\)
\(\Leftrightarrow a^2-\left(x^2-4x+4\right)-7=0\)
\(\Leftrightarrow a^2-\left(x-2\right)^2=7\)
\(\Leftrightarrow\left(a-x+2\right)\left(a+x-2\right)=7\)
... (Đoạn này thì tự làm nhaa)
Đáp án:
x=5x=5
Giải thích các bước giải:
D=x2−4x+11D=x2−4x+11 là số chính phương
→x2−4x+11=k2(k∈N∗)→x2−4x+11=k2(k∈N∗)
→(x2−4x+4)−k2=−7→(x2−4x+4)−k2=−7
→(x−2+k)(x−2−k)=−7(∗)→(x−2+k)(x−2−k)=−7(∗)
Do k∈N∗k∈N∗
nên x∈Zx∈Z
⇒(∗)⇒(∗) là phương trình ước số của −7−7
Ta có:
−7=(−1).7=1.(−7)=(−7).1=7.(−1)−7=(−1).7=1.(−7)=(−7).1=7.(−1)
Ta được:
{x+k−2=−1x−k−2=7{x+k−2=1x−k−2=−7{x+k−2=−7x−k−2=1{x+k−2=7x−k−2=−1[{x+k−2=−1x−k−2=7{x+k−2=1x−k−2=−7{x+k−2=−7x−k−2=1{x+k−2=7x−k−2=−1
⇔
{x=5k=−4(loại){x=−1k=2(loại){x=−1k=−4(loại){x=5k=4(nhận)⇔[{x=5k=−4(loại){x=−1k=2(loại){x=−1k=−4(loại){x=5k=4(nhận)
Vậy x=5