Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để a âm thì cả biểu thức phải nhỏ hơn 0
a.\(\left(x-1\right)+x\left(x+1\right)< 0\)
\(\Leftrightarrow x-1+x^2+x< 0\)
\(\Leftrightarrow x^2+2x-1< 0\)
\(\Leftrightarrow-\left(x^2-2x+1\right)< 0\)
\(\Leftrightarrow-\left(x-1\right)^2< 0\)
Vì \(\left(x-1\right)^2\ge0\) mà có dấu "-" nên biểu thức luôn âm vs \(\forall x\)
a) \(\left(x-1\right)+x\left(x+1\right)\)
\(=x-1+x^2+x\)
\(=x^2+2x-1\)
\(=\left(x^2+2x+1\right)-2\)
\(=\left(x+1\right)^2-2< 0\)
\(\Leftrightarrow\left(x+1\right)^2< 2\)
mà \(\left(x+1\right)^2\ge0\)
nên \(\Rightarrow x+1=0\)hoặc \(x+1=1\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)
a: A>0
=>\(x^2-3x>0\)
=>x(x-3)>0
TH1: \(\left\{{}\begin{matrix}x>0\\x-3>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>0\\x>3\end{matrix}\right.\)
=>x>3
TH2: \(\left\{{}\begin{matrix}x< 0\\x-3< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< 0\\x< 3\end{matrix}\right.\)
=>x<0
d: Để D<0 thì \(x^2+\dfrac{5}{2}x< 0\)
=>\(x\left(x+\dfrac{5}{2}\right)< 0\)
TH1: \(\left\{{}\begin{matrix}x>0\\x+\dfrac{5}{2}< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>0\\x< -\dfrac{5}{2}\end{matrix}\right.\)
=>Loại
Th2: \(\left\{{}\begin{matrix}x< 0\\x+\dfrac{5}{2}>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< 0\\x>-\dfrac{5}{2}\end{matrix}\right.\)
=>\(-\dfrac{5}{2}< x< 0\)
e: ĐKXĐ: x<>2
Để E<0 thì \(\dfrac{x-3}{x-2}< 0\)
TH1: \(\left\{{}\begin{matrix}x-3>=0\\x-2< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=3\\x< 2\end{matrix}\right.\)
=>Loại
TH2: \(\left\{{}\begin{matrix}x-3< =0\\x-2>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< =3\\x>2\end{matrix}\right.\)
=>2<x<=3
g: Để G<0 thì \(\left(2x-1\right)\left(3-2x\right)< 0\)
=>\(\left(2x-1\right)\left(2x-3\right)>0\)
TH1: \(\left\{{}\begin{matrix}2x-1>0\\2x-3>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>\dfrac{1}{2}\\x>\dfrac{3}{2}\end{matrix}\right.\)
=>\(x>\dfrac{3}{2}\)
TH2: \(\left\{{}\begin{matrix}2x-1< 0\\2x-3< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< \dfrac{1}{2}\\x< \dfrac{3}{2}\end{matrix}\right.\)
=>\(x< \dfrac{1}{2}\)
\(x^2+2x+4x+8\)
\(=x\left(x+2\right)+4\left(x+2\right)\)
\(=\left(x+2\right)\left(x+4\right)\)
Ta có: \(\left(x+2\right)\left(x+4\right)< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+2< 0\\x+4>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+2>0\\x+4< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< -2\\x>-4\end{matrix}\right.\\\left\{{}\begin{matrix}x>-2\\x< -4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-2>x>-4\\-2< x< -4\text{(vô lí)}\end{matrix}\right.\)
Vậy để biểu thức âm thì -2 > x > -4.
\(x^2+2x+4x+8< 0\)
\(\Rightarrow x\left(x+2\right)+4\left(x+2\right)< 0\)
\(\Rightarrow\left(x+4\right)\left(x+2\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+4< 0\Rightarrow x< -4\\x+2>0\Rightarrow x>-2\end{matrix}\right.\\\left\{{}\begin{matrix}x+4>0\Rightarrow x>-4\\x+2< 0\Rightarrow x< -2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-4< x< -2\)
\(\left(x-1\right)+x\left(x+1\right)\)
\(=x-1+x^2+x\)
\(=\left(x^2+2x+1\right)-2\)
\(=\left(x+1\right)^2-2< 0\)
\(\Rightarrow\orbr{\begin{cases}x+1=1\\x+1=2\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
\(A=x^2+4x< 0\)
\(=>x^2< -4x\)
\(=>x< -4\)
\(\left(x-3\right)\left(x+7\right)< 0\)
\(=>x-3< 0< x+7\)hoặc \(x+7< 0< x-3\)
\(=>-7< x< 3\)
\(x^2+4x< 0\)
\(\Rightarrow x\left(x+4\right)< 0\)
Th1 : \(\hept{\begin{cases}x>0\\x+4< 0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x< -4\end{cases}}}\)
Th2 : \(\hept{\begin{cases}x< 0\\x+4>0\end{cases}\Rightarrow\hept{\begin{cases}x< 0\\x>-4\end{cases}}}\)
Những câu còn lại tương tự thôi
(1-x)(1+x)<0
-> (1-x) và (1+x) trái dấu
TH1: \(\hept{\begin{cases}1-x< 0\\1+x>0\end{cases}\rightarrow\hept{\begin{cases}x>1\\x>-1\end{cases}\rightarrow}x>1}\)
TH2: \(\hept{\begin{cases}1-x>0\\1+x< 0\end{cases}\rightarrow\hept{\begin{cases}x< 1\\x< -1\end{cases}\rightarrow}x< -1}\)
Vậy \(\orbr{\begin{cases}x>1\\x< -1\end{cases}}\)
dễ ẹt mà ko biết.ngu.v.c
đề x-1-x(x+1) mới đ