K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 1

Áp dụng BĐT trị tuyệt đối:

\(A=\left|x+3\right|+\left|5-x\right|+\left|x-2\right|\ge\left|x+3+5-x\right|+\left|x-2\right|\)

\(\Rightarrow A\ge8+\left|x-2\right|\)

Mà \(\left|x-2\right|\ge0;\forall x\)

\(\Rightarrow A\ge8\)

Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}\left(x+3\right)\left(5-x\right)\ge0\\\left|x-2\right|=0\\\end{matrix}\right.\)

\(\Rightarrow x=2\)

3 tháng 1
6 tháng 12 2015

làm được nhưng nhìu quá

11 tháng 12 2015

bạn bè cùng lớp thì tick đi

21 tháng 8 2018

\(A=\left|x-5\right|+\left|x+3\right|\ge\left|5-x+x+3\right|=8\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-5\ge0\\x+3\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge5\\x\ge-3\end{cases}\Rightarrow}x\ge5}\)

Vậy,..........

4 tháng 4 2017

Ta có B đạt GTNN \(\Leftrightarrow\hept{\begin{cases}\left|x-1\right|+\left|x-5\right|\\\left|x-2\right|+\left|x-3\right|\end{cases}}\) đạt GTNN

Mà: \(\left|x-1\right|+\left|x-5\right|=\left|x-1\right|+\left|5-x\right|\ge\left|x-1+5-x\right|=4\)

Dấu bằng xảy ra\(\Leftrightarrow\left(x-1\right)\left(5-x\right)\ge0\Leftrightarrow1\le x\le5\)

Xét tương tự: \(\left|x-2\right|+\left|x-3\right|=\left|x-2\right|+\left|3-x\right|\ge\left|x-2+3-x\right|=1\)

Dấu bằng xảy ra \(\left(x-2\right)\left(3-x\right)\ge0\Leftrightarrow2\le x\le3\)

Suy ra \(B\ge4+1=5\Leftrightarrow2\le x\le3\)

Vậy GTNN của B=5 khi và chỉ khi \(2\le x\le3\)

6 tháng 11 2016

bài 2

Ta có:

\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)

Trường hợp 1: \(x-102>0\Rightarrow x>102\)

\(2-x>0\Rightarrow x< 2\)

\(\Rightarrow102< x< 2\left(loại\right)\)

Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)

\(2-x< 0\Rightarrow x>2\)

\(\Rightarrow2< x< 102\left(nhận\right)\)

Vậy GTNN của A là -100 đạt được khi 2<x<102.

6 tháng 11 2016

trị tuyệt đối phải bằng dương chứ sao bằng âm được

24 tháng 1 2016

Bài 1 : 

A đạt GTLN khi \(\frac{5}{4-x}\)đạt GTLN 

* Nếu 4 -x > 0 => \(\frac{5}{4-x}\)> 0            (1)

* Nếu 4 -x < 0 => \(\frac{5}{4-x}\)< 0            (2)

 

Từ (1) và (2) =>  \(\frac{5}{4-x}\)đạt GTLN khi 4 - x > 0 (a)

- Phân số  \(\frac{5}{4-x}\)> 0 có tử là 5 : không đổi nên  \(\frac{5}{4-x}\)đạt GTLN khi 4 - x đạt GTNN (b)

- Mà x thuộc Z => 4 - x thuộc Z (c)

- Từ (a), (b), và (c) => 4 - x = 1 => x = 3

Vậy x = 3 thì A có GTLN là \(\frac{5}{4-3}\)= 5