Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Sử dụng phép thế
Có x - y = 2 => x = 2 + y
Thay x = 2 + y vào các biểu thức cần tính
Bài 2:
\(P=9-2\left|x-3\right|\le9\) dấu bằng <=> x = 3
\(Q=\left|x-2\right|+\left|x-8\right|=\left|x-2\right|+\left|8-x\right|\ge\left|x-2+8-x\right|=6\) dấu bằng <=> \(\left(x-2\right)\left(8-x\right)\ge0\)
a) \(\left|x-3\right|\ge0\Leftrightarrow-2\left|x-3\right|\le0\Leftrightarrow9-2\left|x-3\right|\le9\)=> GTLN=9 <=> x=3
b) \(\left|x-2\right|+\left|x-8\right|=\left|x-2\right|+\left|8-x\right|\ge\left|x-2+8-x\right|=\left|6\right|=6\)
=> GTNN=6 <=> x=5
Bài 3:
Đặt: \(x^2=a\left(a\ge0\right),y^2=b\left(b\ge0\right)\)
Ta có: \(\frac{a+b}{10}=\frac{a-2b}{7}\) và a2b2 = 81
\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{\left(a+b\right)-\left(a-2b\right)}{10-7}=\frac{3b}{3}=b\) (1)
\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{2a+2b}{20}=\frac{\left(2a+2b\right)+\left(a-2b\right)}{20+7}=\frac{3a}{27}=\frac{a}{9}\) (2)
Từ (1) và (2) => \(\frac{a}{9}=b\Rightarrow a=9b\)
Do a2b2 = 81 nên: (9b)2.b2 = 81 => 81b4 = 81 => b4 = 1=> b = 1 (vì: \(b\ge0\))
=> a = 9.1 = 9
Ta có: x2 = 9 và y2 = 1
=> x = -3, 3
y = -1; 1
Mình làm bài 4, bài 5 làm tương tự bài 4 nhé
Biết rằng: \(\left|A\right|\ge A\)
\(\left|A\right|=\left|-A\right|\) và \(\left|A\right|\ge0\)
Ta có: \(A=\left|x-3\right|+\left|x-5\right|+\left|7-x\right|\ge x-3+0+7-x=4\)
Dấu "=" xảy ra khi và chỉ khi: \(\hept{\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge3\\x=5\\x\le7\end{cases}}\Leftrightarrow x=5\)
Với x = 5 thì A đạt gtnn là: 4
\(\left|x-5\right|+\left|x-7\right|\\ =\left|5-x\right|+\left|x-7\right|\\ \ge\left|5-x+x-7\right|\\ =\left|-2\right|\\ =2\)
Dấu "=" xảy ra \(\Leftrightarrow\left(5-x\right)\left(x-7\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}5-x\ge0\\x-7\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}5-x\le0\\x-7\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\le5\\x\ge7\left(vô.lí\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge5\\x\le7\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow5\le x\le7\)
Vậy \(5\le x\le7\) thì \(\left|x-5\right|+\left|x-7\right|\) đạt GTNN
a, Ta có: \(-2\left|x-3\right|\le0\)
\(\Rightarrow A=9-2\left|x-3\right|\le9\)
Dấu " = " khi \(2\left|x-3\right|=0\Rightarrow x=3\)
Vậy \(MAX_A=9\) khi x = 3
b,Ta có: \(B=\left|x-2\right|+\left|x-8\right|=\left|x-2\right|+\left|8-x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:
\(B=\left|x-2\right|+\left|8-x\right|\ge\left|x-2+8-x\right|=\left|6\right|=6\)
Dấu " = " khi \(\left\{{}\begin{matrix}x-2\ge0\\8-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge2\\x\le8\end{matrix}\right.\)
Vậy \(MIN_B=6\) khi \(2\le x\le8\)
a, \(A=9-2\left|x-3\right|\)
Với mọi giá trị của \(x\in R\) ta có:
\(2\left|x-3\right|\ge0\Rightarrow9-2\left|x-3\right|\le9\)
Hay \(A\le9\) với mọi giá trị của \(x\in R\).
Để \(A=9\) thì \(9-2\left|x-3\right|=9\)
\(\Rightarrow2\left|x-3\right|=0\Rightarrow x=3\)
Vậy..........
b, \(B=\left|x-2\right|+\left|x-8\right|\)
\(B=\left|x-2\right|+\left|8-x\right|\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left|x-2\right|\ge x-2;\left|8-x\right|\ge8-x\)
\(\Rightarrow\left|x-2\right|+\left|8-x\right|\ge x-2+8-x\ge6\)
Hay \(B\ge6\) với mọi giá trị của \(x\in R\).
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\left|x-2\right|\ge0\\\left|8-x\right|\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge2\\x\le8\end{matrix}\right.\)
\(\Rightarrow2\le x\le8\)
Vậy..............
Chúc bạn học tốt!!!
Bài 1:
a) \(\left|x-2\right|=5\)
⇒ \(\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=5+2\\x=\left(-5\right)+2\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)
Vậy \(x\in\left\{7;-3\right\}.\)
b) \(\left|x-1\right|>4\)
⇒ \(\left[{}\begin{matrix}x-1>4\\x-1< -4\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x>5\left(TM\right)\\x< -3\left(TM\right)\end{matrix}\right.\)
Vậy \(x>5\) hoặc \(x< -3\) thì \(\left|x-1\right|>4.\)
Mình chỉ làm bài 1 thôi nhé.
Chúc bạn học tốt!
bài 2
\(A=\left|x-\frac{1}{3}\right|+2019\)
Có: \(\left|x-\frac{1}{3}\right|\ge0với\forall x\)
\(\Rightarrow\left|x-\frac{1}{3}\right|+2019\ge2019\\ \Leftrightarrow A\ge2019\)
Dấu "=" xảy ra khi: \(\left|x-\frac{1}{3}\right|=0\Leftrightarrow x=\frac{1}{3} \)
Vậy \(A_{min}=2019\) khi \(x=\frac{1}{3}\)
\(B=2020.\left|3x-1\right|\)
Có: \(\left|3x-1\right|\ge0với\forall x\)
\(\Rightarrow2020.\left|3x-1\right|\ge0\)
\(\Leftrightarrow B\ge0\)
Dấu "=" xảy ra khi \(\left|3x-1\right|=0\Leftrightarrow x=\frac{1}{3}\)
Vậy \(B_{min}=0\) khi \(x=\frac{1}{3}\)
Bài 1 :
A đạt GTLN khi \(\frac{5}{4-x}\)đạt GTLN
* Nếu 4 -x > 0 => \(\frac{5}{4-x}\)> 0 (1)
* Nếu 4 -x < 0 => \(\frac{5}{4-x}\)< 0 (2)
Từ (1) và (2) => \(\frac{5}{4-x}\)đạt GTLN khi 4 - x > 0 (a)
- Phân số \(\frac{5}{4-x}\)> 0 có tử là 5 : không đổi nên \(\frac{5}{4-x}\)đạt GTLN khi 4 - x đạt GTNN (b)
- Mà x thuộc Z => 4 - x thuộc Z (c)
- Từ (a), (b), và (c) => 4 - x = 1 => x = 3
Vậy x = 3 thì A có GTLN là \(\frac{5}{4-3}\)= 5