K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2021

\(\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{6}\right|+...+\left|x+\dfrac{1}{110}\right|=11x\left(đk:x\ge0\right)\)

\(\Leftrightarrow x+\dfrac{1}{2}+x+\dfrac{1}{6}+x+\dfrac{1}{12}+...+x+\dfrac{1}{110}=11x\)

\(\Leftrightarrow10x+\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{10.11}\right)=11x\)

\(\Leftrightarrow x=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{10}-\dfrac{1}{11}\)

\(\Leftrightarrow x=1-\dfrac{1}{11}=\dfrac{10}{11}\left(tm\right)\)

27 tháng 1 2018

Với \(\forall x\) ta có :

+) \(\left|x+\dfrac{1}{2}\right|\ge0\)

+) \(\left|x+\dfrac{1}{6}\right|\ge0\)

..........................

+) \(\left|x+\dfrac{1}{110}\right|\ge0\)

\(\Leftrightarrow\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{6}\right|+.........+\left|x+\dfrac{1}{110}\right|\ge0\)

\(\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{6}\right|+........+\left|x+\dfrac{1}{110}\right|=11x\)

\(\Leftrightarrow11x\ge0\)

\(\Leftrightarrow x\ge0\)

Với \(x\ge0\) thì :

+) \(\left|x+\dfrac{1}{2}\right|=x+\dfrac{1}{2}\)

+) \(\left|x+\dfrac{1}{6}\right|=x+\dfrac{1}{6}\)

.....................................

+) \(\left|x+\dfrac{1}{110}\right|=x+\dfrac{1}{110}\)

\(\Leftrightarrow x+\dfrac{1}{2}+x+\dfrac{1}{6}+......+x+\dfrac{1}{110}=11x\)

\(\Leftrightarrow11x+\left(\dfrac{1}{2}+\dfrac{1}{6}+........+\dfrac{1}{110}\right)=11x\)

\(\Leftrightarrow0x=\dfrac{1}{2}+\dfrac{1}{6}+....+\dfrac{1}{110}\) (vô lí)

\(\Leftrightarrow x\in\varnothing\)

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Lời giải:
Vế trái luôn không âm (tính chất trị tuyệt đối)

$\Rightarrow -11x\geq 0$

$\Rightarrow x\leq 0$

Do đó: $x-\frac{1}{3}, x-\frac{1}{15},..., x-\frac{1}{399}<0$

PT trở thành:
$\frac{1}{3}-x+\frac{1}{15}-x+...+\frac{1}{399}-x=-11x$

$(\frac{1}{3}+\frac{1}{15}+...+\frac{1}{399})-10x=-11x$

$\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{19.21}=-x$

$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{19}-\frac{1}{21})=-x$

$\frac{1}{2}(1-\frac{1}{21})=-x$

$\frac{10}{21}=-x$

$\Rightarrow x=\frac{-10}{21}$

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Lời giải:
Vế trái luôn không âm (tính chất trị tuyệt đối)

$\Rightarrow -11x\geq 0$

$\Rightarrow x\leq 0$

Do đó: $x-\frac{1}{3}, x-\frac{1}{15},..., x-\frac{1}{399}<0$

PT trở thành:
$\frac{1}{3}-x+\frac{1}{15}-x+...+\frac{1}{399}-x=-11x$

$(\frac{1}{3}+\frac{1}{15}+...+\frac{1}{399})-10x=-11x$

$\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{19.21}=-x$

$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{19}-\frac{1}{21})=-x$

$\frac{1}{2}(1-\frac{1}{21})=-x$

$\frac{10}{21}=-x$

$\Rightarrow x=\frac{-10}{21}$

10 tháng 12 2023

Sửa đề:

 \(\dfrac{2}{\left(x-1\right)\left(x-3\right)}+\dfrac{5}{\left(x-3\right)\left(x-8\right)}+\dfrac{12}{\left(x-8\right)\left(x-20\right)}-\dfrac{1}{x-20}=-\dfrac{3}{4}\)

ĐKXĐ: \(x\notin\left\{1;3;8;20\right\}\)

PT=>\(-\dfrac{1}{x-1}+\dfrac{1}{x-3}-\dfrac{1}{x-3}+\dfrac{1}{x-8}-\dfrac{1}{x-8}+\dfrac{1}{x-20}-\dfrac{1}{x-20}=-\dfrac{3}{4}\)

=>\(-\dfrac{1}{x-4}=-\dfrac{3}{4}\)

=>\(x-1=\dfrac{4}{3}\)

=>\(x=\dfrac{4}{3}+1=\dfrac{7}{3}\)(nhận)

27 tháng 11 2018

\(\frac{2}{1^2}.\frac{6}{2^2}.\frac{10}{3^2}.\frac{20}{4^2}.......\frac{110}{10^2}\left(x-2\right)=-20\left(x+1\right)+60\)

\(\Rightarrow\frac{1.2}{1.1}.\frac{2.3}{2.2}.\frac{3.4}{3.3}.\frac{4.5}{4.4}......\frac{10.11}{10.10}\left(x-2\right)=-20x-20+60\)

\(\Rightarrow\frac{1.2.3.4.....10}{1.2.3.4.....10}.\frac{2.3.4.5.....11}{1.2.3.4.....10}\left(x-2\right)=-20x+40\)

\(\Rightarrow11\left(x-2\right)=-20x+40\)

\(\Rightarrow11x-22=-20x+40\)

\(\Rightarrow11x+20x=22+40\)

\(\Rightarrow31x=62\)

\(\Rightarrow x=2\)

Vậy \(x=2\)

9 tháng 6 2017

\(ĐKXĐ:x\ne1,x\ne3,x\ne8,x\ne20\)

\(\dfrac{2}{\left(x-1\right)\left(x-3\right)}+\dfrac{5}{\left(x-3\right)\left(x-8\right)}+\dfrac{12}{\left(x-8\right)\left(x-20\right)}-\dfrac{1}{x-20}=-\dfrac{3}{4}\)

\(\Rightarrow\dfrac{2}{\left(x-1\right)\left(x-3\right)}+\dfrac{5}{\left(x-3\right)\left(x-8\right)}+\dfrac{12}{\left(x-8\right)\left(x-20\right)}-\dfrac{1}{x-20}=-\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{2\left(x-8\right)\cdot\left(x-20\right)+5\left(x-1\right)\cdot\left(x-20\right)+12\left(x-1\right)\cdot\left(x-3\right)-\left(x-1\right)\cdot\left(x-3\right)\cdot\left(x-8\right)}{\left(x-1\right)\left(x-3\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{\left(2x-16\right)\cdot\left(x-20\right)+\left(5x-5\right)\cdot\left(x-20\right)+\left(12x-12\right)\cdot\left(x-3\right)-\left(x^2-3x-x+3\right)\cdot\left(x-8\right)}{\left(x-1\right)\left(x-3\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{2x^2-40x-16x+320+5x^2-100x-5x+100+12x^2-36x-12x+36-\left(x^2-4x+3\right)\cdot\left(x-8\right)}{\left(x-1\right)\left(x-3\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{2x^2-40x-16x+320+5x^2-100x-5x+100+12x^2-36x-\left(x^3-8x^2-4x^2+32x+3x-24\right)}{\left(x-1\right)\left(x-3\right)\left(x-8\right)\left(x-20\right)}\)

\(\Leftrightarrow\dfrac{2x^2-40x-16x+320+5x^2-100x-5x+100+12x^2-36x-12x+36-\left(x^3-12x^2+35x-24\right)}{\left(x-1\right)\left(x-3\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{2x^2-40x-16x+320+5x^2-100x-5x+100+12x^2-36x-12x+36-x^3+12x^2-35x+24}{\left(x-1\right)\left(x-3\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{31x^2-244x+480-x^3}{\left(x-1\right)\left(x-3\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{-x^3+31x^2-244x+480}{\left(x-1\right)\left(x-3\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{-x^3+3x^2+28x^2-84x-160x+480}{\left(x-1\right)\left(x-3\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{-x^2\cdot\left(x-3\right)+28x\cdot\left(x-3\right)-160\left(x-3\right)}{\left(x-1\right)\left(x-3\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{-\left(x-3\right)\left(x^2-28x+160\right)}{\left(x-1\right)\left(x-3\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{-1\left(x^2-8x-20x+160\right)}{\left(x-1\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{-1\left(x^2-8x-20x+160\right)}{\left(x-1\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{-1\left(x\cdot\left(x-8\right)-20\left(x-8\right)\right)}{\left(x-1\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{-1\left(x-20\right)\left(x-8\right)}{\left(x-1\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{-1}{x-1}=-\dfrac{3}{4}\)

\(\Leftrightarrow-\dfrac{1}{x-1}=-\dfrac{3}{4}\)

\(\Leftrightarrow-4=-3\left(x-1\right)\)

\(\Leftrightarrow-4=-3\left(x-1\right)\)

\(\Leftrightarrow-4=-3x+3\)

\(\Leftrightarrow3x=3+4\)

\(\Leftrightarrow3x=7\)

\(\Rightarrow x=\dfrac{7}{3}\)

Vậy \(x=\dfrac{7}{3}\)

9 tháng 6 2017

cho ngu ké với bài này lớp 5 dư sức làm áp dụng 1/n(n+1)=1/n-1/n+1

17 tháng 7 2017

\(\dfrac{2}{\left(x-1\right)\left(x-3\right)}+\dfrac{5}{\left(x-3\right)\left(x-8\right)}+\dfrac{12}{\left(x-8\right)\left(x-20\right)}+\dfrac{1}{x-20}=\dfrac{3}{4}\)

\(\Rightarrow\dfrac{1}{x-1}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-\dfrac{1}{x-8}+\dfrac{1}{x-8}-\dfrac{1}{x-20}+\dfrac{1}{x-20}=\dfrac{3}{4}\)

\(\Rightarrow\dfrac{1}{x-1}=\dfrac{3}{4}\Rightarrow3x-3=4\Rightarrow x=\dfrac{7}{3}\)

Vậy...