Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(|x-1|=2x-5\)
\(\Rightarrow\hept{\begin{cases}x-1=2x-5\\x-1=5-2x\end{cases}}\)khi\(\hept{\begin{cases}x\ge1\\x\le1\end{cases}}\)
TH1: x\(\ge\)1
\(\Rightarrow x-1=2x-5\)
\(\Rightarrow x-2x=-5+1\)
\(\Rightarrow-x=-4\Rightarrow x=4\left(tm\right)\)
TH2 : x\(\le\)1
\(\Rightarrow x-1=5-2x\)
\(\Rightarrow x+2x=5+1\)
\(\Rightarrow3x=6\Rightarrow x=2\left(L\right)\)
Vậy x=4
Vì /x-1/ = 2x - 5 => x-1 = 2x-5 hoặc x-1 = -(2x-5)
Trường hợp 1:
x-1 = 2x-5
x-2x = -5 + 1
x.(1-2)= -4
-x = -4
=> x = 4
Trường hợp 2:
x -1 = -(2x - 5)
x -1 = -2x+5
x+2x = 5+1
3x = 6
x = 6:3
x=2
Vậy x = 4 hoặc x=2
Học tốt nha bn
Sửa đề : a) Tìm GTNN A
a) \(A=\left|x-5\right|+3\)có : \(\left|x-5\right|\ge0\Rightarrow\left|x-5\right|+3\ge0\)
\(\Leftrightarrow A\ge3\)dấu "=" xảy ra khi : \(\left|x-5\right|=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)
Vậy GTNN A = 3 khi x = 5.
b) \(C=-\left|x+1\right|+5\)có : \(-\left|x+1\right|\le0\Rightarrow-\left|x+1\right|+5\le5\)
\(\Leftrightarrow C\le5\)dấu "=" xảy ra khi : \(-\left|x+1\right|=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy GTLN C = 5 khi x = -1.
\(D=5-\left|2x+3\right|\)có : \(-\left|2x+3\right|\le0\Rightarrow5-\left|2x+3\right|\le5\)
\(\Leftrightarrow D\le5\)dấu "=" xảy ra khi : \(-\left|2x+3\right|=0\Leftrightarrow2x+3=0\Leftrightarrow x=-\frac{3}{2}\)
Vậy GTLN D = 5 khi x = -3/2.
c) \(\left|x-3\right|+\left|y+1\right|=0\)có \(\left|x-3\right|\ge0;\left|y+1\right|\ge0\Rightarrow\left|x-3\right|+\left|y+1\right|\ge0\)
\(\Rightarrow\hept{\begin{cases}\left|x-3\right|=0\\\left|y+1\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-1\end{cases}}.\)
\(\left|2x-1\right|+\left|2x-5\right|=4\)
\(\Leftrightarrow\left|2x-1\right|+\left|5-2x\right|=4\)
Ta có: \(\hept{\begin{cases}\left|2x-1\right|\ge2x-1\forall x\\\left|5-2x\right|\ge5-2x\forall x\end{cases}}\)
\(\Rightarrow\left|2x-1\right|+\left|2x-5\right|\ge\left(2x-1\right)+\left(5-2x\right)=2x-1+5-2x=4\)
Mà \(\left|2x-1\right|+\left|2x-5\right|=4\)
\(\Rightarrow\hept{\begin{cases}\left|2x-1\right|=2x-1\\\left|5-2x\right|=5-2x\end{cases}\Leftrightarrow\hept{\begin{cases}2x-1\ge0\\5-2x\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge\frac{1}{2}\\x\le\frac{5}{2}\end{cases}\Rightarrow}\frac{1}{2}\le x\le\frac{5}{2}}\)
Vậy \(\frac{1}{2}\le x\le\frac{5}{2}\)
Tham khảo nhé~
2x + 1/1 - x = - 5/3
➡️2x + 1 - x = - 5/3
➡️2x - x = - 5/3 - 1
➡️x = - 8/3
Hok tốt~
=> |2x+3| = 5+2.|4-x| = 5+|8-2x|
=> 2x+3 = 5+8-2x hoặc 2x+3 = 5-8+2x
=> x = 5/2
Vậy x = 5/2
Tk mk nha
ta có 5= 5 x 1
=> \(\hept{\begin{cases}2x+3=1\\y+1=5\end{cases}}\)=> \(\hept{\begin{cases}2x=-2\\y=4\end{cases}}\)=>\(\hept{\begin{cases}x=-1\\y=4\end{cases}}\)
Th2
\(\hept{\begin{cases}2x+3=5\\y+1=1\end{cases}}\)=> \(\hept{\begin{cases}2x=2\\y=0\end{cases}}\)=> \(\hept{\begin{cases}x=1\\y=0\end{cases}}\)
a)\(\frac{1}{4}+\frac{1}{3}:2x=-5\)
\(\frac{1}{3}:2x=-5-\frac{1}{4}\)
\(\frac{1}{3}:2x=-\frac{21}{3}\)
\(2x=\frac{1}{3}:\left(\frac{-21}{3}\right)\)
\(2x=-\frac{1}{21}\)
\(x=\frac{-1}{42}\)
b)\(\left(3x-\frac{1}{4}\right).\left(x+\frac{1}{2}\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}3x-\frac{1}{4}=0\\x+\frac{1}{2}=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}3x=\frac{1}{4}\\x=-\frac{1}{2}\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{1}{12}\\x=-\frac{1}{2}\end{array}\right.\)
c)\(\left(2x-5\right).\left(\frac{3}{2}x+9\right).\left(0,3x-12\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x-5=0\\\frac{3}{2}x+9=0\\0,3x-12=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}2x=5\\\frac{3}{2}x=-9\\0,3x=12\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-6\\x=40\end{array}\right.\)
a) 1/4 + 1/3 : 2x = -5
=> 1/3 : 2x = -5 - 1/4
=> 1/3 : 2x = -21/4
=> 2x = 1/3 : (-21/4) = -4/63
=> x = -4/63 : 2 = -2/63