Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}=\frac{x+1}{5}+\frac{x+1}{6}\)
<=> \(\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)=0\)
<=> \(x+1=0\) (do 1/2 + 1/3 + 1/4 - 1/5 - 1/6 khác 0)
<=> \(x=-1\)
Vậy...
\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)
<=> \(\frac{x+1}{2009}+1+\frac{x+2}{2008}+1+\frac{x+3}{2007}+1=\frac{x+10}{2000}+1+\frac{x+11}{1999}+1+\frac{x+12}{1998}+1\)
<=> \(\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)
<=> \(\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)
<=> \(x+2010=0\) (do 1/2009 + 1/2008 + 1/2007 - 1/2000 - 1/1999 - 1/1998 khác 0)
<=> \(x=-2010\)
Vậy....
Ta có : x/2 - 1/x = 1/12
\(\Leftrightarrow\frac{x^2-2}{2x}=\frac{1}{12}\)
=> 12(x^2-2) = 2x
=> 6(x2 - 2 ) = x
=> 6x2 - 12 = x
=> 6x2 - x = 12
=> x.(6x-1) = 12
Vì 12 = 1.12 = 2.6 = 3.4 = (-1).(-12)=(-2).(-6)=(-3).(-4)
mà 6x là số chẵn ( vì 6x chia hết cho 2) nên ta loại trường hợp 2 và 6, -2 và -6. Còn những trường hợp kia đều chọn
Bạn tự thay các kết quả vào nha
\(\frac{x}{2}\)- \(\frac{1}{x}=\frac{1}{12}\)
\(\frac{x}{2}=\frac{1}{12}+\frac{1}{x}\)
\(\frac{6x\cdot x}{2\cdot6\cdot x}=\frac{12+x}{12x}\)
\(\Rightarrow\)6x . x = 12 + x
=> 6 . 2 . ( x - 2 ) . x = 12 + x
=> 12 . ( x - 2 ) . x = 12 + x
=> x^2 - 2x - 1 = x
=> x^2 = 3x + 1
Mình chịu rồi
d) \(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)
<=> \(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}-\frac{x+10}{2000}-\frac{x+11}{1999}-\frac{x+12}{1998}=0\)
<=> \(\left(\frac{x+1}{2009}+1\right)+\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+3}{2007}+1\right)-\left(\frac{x+10}{2000}+1\right)-\left(\frac{x+11}{1999}+1\right)-\left(\frac{x+12}{1998}+1=0\right)\)
<=> \(\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}=0\)
<=>\(\left(x+2010\right).\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)
<=> x+2010 = 0 vì \(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\ne0\)
<=> x = -2010
a) \(\frac{1}{2}-|\frac{5}{4}-2x|=\frac{1}{3}\Leftrightarrow|\frac{5}{4}-2x|=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{4}-2x=\frac{1}{6}\\\frac{5}{4}-2x=-\frac{1}{6}\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{5}{4}-\frac{1}{6}=\frac{13}{12}\\2x=\frac{5}{4}+\frac{1}{6}=\frac{17}{12}\end{cases}}}\)
Tự làm nốt và kết luận
b) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)=0\)
Vì \(\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)\ne0\forall x\Rightarrow x+1=0\Leftrightarrow x=-1\)
Vậy ....
\(2x-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-....-\frac{1}{49.50}=7+\frac{1}{50}+x\)
\(2x-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{49.50}\right)=7+\frac{1}{50}+x\)
\(2x-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{49.50}\right)=7+\frac{1}{50}+x\)
\(2x-\left(\frac{1}{1}-\frac{1}{50}\right)=7+\frac{1}{50}+x\)
\(2x-1+\frac{1}{50}=7+\frac{1}{50}+x\)
=> 2x - 1 = 7 + x
=> 2x - x = 7 + 1
=> x = 8
#)Giải :
a) x + 2x + 3x + ... + 100x = - 213
=> 100x + ( 2 + 3 + 4 + ... + 100 ) = - 213
=> 100x + 5049 = - 213
<=> 100x = - 5262
<=> x = - 52,62
#)Giải :
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{3}+\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{2}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{4}\right)x=\frac{1}{2}\)
\(\Rightarrow\frac{3}{4}x=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{2}{3}\)
Ta có: \(\left|x+\frac{1}{2}\right|\ge0\left|x+\frac{1}{6}\right|\ge0;...;\left|x+\frac{1}{110}\ge0\right|\)
\(\Rightarrow\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{100}\right|\ge0\)
\(\Rightarrow11x\ge0\Rightarrow x\ge0\)
\(\Rightarrow x+\frac{1}{2}>0;x+\frac{1}{6}>0;...;x+\frac{1}{100}>0\)
\(\Rightarrow\left|x+\frac{1}{2}\right|=x+\frac{1}{2};\left|x+\frac{1}{6}\right|=x+\frac{1}{6};...;\left|x+\frac{1}{100}\right|=x+\frac{1}{110}\)
\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{110}\right)=11x\)
\(\Rightarrow10x+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\right)=11x\)
\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=11x\)
\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=11x\)
\(\Rightarrow10x+\frac{10}{11}=11x\)
\(\Rightarrow x=\frac{10}{11}\)
vì |x+1/2| ; |x+1/6| ; ............ ; |x+110| lớn hơn hoặc bằng 0=> 11x lớn hớn hoặc bằng 0=> x lớn hớn hoặc bằng 0
=>x+1/2 ; x+1/6 ; ............ ; x+110 lớn hơn hoặc bằng 0
ta có: x+1/2+x+1/6+x+1/12+...+x+1/110=11x
(x+x+...+x)+(1/1.2+1/2.3+1/3.4+...+1/10.11)=11x
10x+(1-1/10)=11x
x= 1/9
à mình bỏ dấu" | " vì khi mà lớn hơn hoặc bằng 1 rồi thfi bỏ ra nó vẫn có giá trị bằng giá trị trị lúc ban đầu
TRẢ LỜI GIÚP TUI NHA. NHANH VÀ ĐÚNG ĐẦY ĐỦ CÁC BƯỚC TUI TK CHO 10000000000 LUÔN