K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2017

\(2x-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-....-\frac{1}{49.50}=7+\frac{1}{50}+x\)

\(2x-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{49.50}\right)=7+\frac{1}{50}+x\)

\(2x-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{49.50}\right)=7+\frac{1}{50}+x\)

\(2x-\left(\frac{1}{1}-\frac{1}{50}\right)=7+\frac{1}{50}+x\)

\(2x-1+\frac{1}{50}=7+\frac{1}{50}+x\)

=> 2x - 1 = 7 + x

=> 2x - x = 7 + 1

=> x = 8 

6 tháng 8 2017

\(2x-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\right)\) =\(\frac{349}{50}+x\)

\(x-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)\) \(=\frac{349}{50}\)

\(x-\left(1-\frac{1}{50}\right)=\frac{349}{50}\)

\(x-\frac{49}{50}=\frac{349}{50}\)

\(x=\frac{199}{25}\)

6 tháng 8 2017

=> 2x- ( 1/2+1/6+1/12+..._1/ 49.50 )= 7-1/50+x

=> 2x -( 1/1.2 + 1/2.3+1/3.4+...+1/49.50)= 7-1/50+x

=> 2x - ( 1- 1/2+ 1/2-1/3+1/3-1/4+...+1/49-1/50) = 7-1/50 + x

=> 2x - ( 1-1/50) =7-1/50 + x

=> 2x- 1+ 1/50=7-1/50+ x

=> 1+1/50= 2x- (7 - 1/50+ x)

=> 1+1/50 = 2x- 7 + 1/50- x

=> 1+1/50 = x + 1/50 - 7

=> 1 = x + 1/50 - 7 - 1/50

=> 1 = x - 7

=> x = 7+ 1

=> x = 8

3 tháng 7 2019

#)Giải :

\(2x-3=x+\frac{1}{2}\)

\(\Leftrightarrow2x-3-x+\frac{1}{2}=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-3=0\\x+\frac{1}{2}=0\end{cases}}\Rightarrow\orbr{\begin{cases}2x=3\\x=-\frac{1}{2}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-\frac{1}{2}\end{cases}}}\)

3 tháng 7 2019

a) \(2x-3=x+\frac{1}{2}\)

\(\Leftrightarrow2x-x=\frac{1}{2}+3\)

\(\Leftrightarrow x=\frac{7}{2}\)

Vậy...

b) \(4x-\left(2x+1\right)=3-\frac{1}{3}+x\)

\(\Leftrightarrow4x-2x-1=3-\frac{1}{3}+x\)

\(\Leftrightarrow4x-2x-x=3-\frac{1}{3}+1\)

\(\Leftrightarrow x=\frac{11}{3}\)

Vậy ...

c) \(2x-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-...-\frac{1}{49.50}=7-\frac{1}{50}+x\)

\(\Leftrightarrow2x-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{49.50}\right)=\frac{349}{50}+x\)

\(\Leftrightarrow2x-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\right)=\frac{349}{50}+x\)

\(\Leftrightarrow2x-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)=\frac{349}{50}+x\)

\(\Leftrightarrow2x-\left(1-\frac{1}{50}\right)=\frac{349}{50}+x\)

\(\Leftrightarrow2x-\frac{49}{50}=\frac{349}{50}+x\)

\(\Leftrightarrow2x-x=\frac{349}{50}+\frac{49}{50}\)

\(\Leftrightarrow x=\frac{199}{25}\)

Vậy ...

2 tháng 8 2016

Thank you ... Thank you ... Thank .... Thank SOOOOOO MUUUCHHH !!!!!!!!!

NV
24 tháng 6 2019

\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{60}\)

\(=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+...+\frac{1}{50}+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)

2/ \(A=\frac{1}{2}+\frac{1}{12}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(A=\frac{7}{12}+\frac{1}{5.6}+\frac{1}{7.8}+...+\frac{1}{99.100}>\frac{7}{12}\)

Tương tự câu trên ta có: \(A=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(A=\frac{1}{51}+...+\frac{1}{60}+\frac{1}{61}+...+\frac{1}{70}+\frac{1}{71}+...+\frac{1}{80}+\frac{1}{81}+...+\frac{1}{90}+\frac{1}{91}+...+\frac{1}{100}\)

\(A< \frac{1}{50}+...+\frac{1}{50}+\frac{1}{60}+...+\frac{1}{60}+\frac{1}{70}+...+\frac{1}{70}+\frac{1}{80}+...+\frac{1}{80}+\frac{1}{90}+...+\frac{1}{90}\)

\(A< 10.\frac{1}{50}+10.\frac{1}{60}+10.\frac{1}{70}+10.\frac{1}{80}+10.\frac{1}{90}\)

\(A< \frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}< \frac{5}{6}\)

5 tháng 6 2019

#)Giải :

a) x + 2x + 3x + ... + 100x = - 213

=> 100x + ( 2 + 3 + 4 + ... + 100 ) = - 213 

=> 100x + 5049 = - 213 

<=> 100x = - 5262

<=> x = - 52,62

5 tháng 6 2019

#)Giải :

b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)

\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{3}+\frac{1}{6}\)

\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{2}\)

\(\Rightarrow\left(\frac{1}{2}+\frac{1}{4}\right)x=\frac{1}{2}\)

\(\Rightarrow\frac{3}{4}x=\frac{1}{2}\)

\(\Leftrightarrow x=\frac{2}{3}\)

3 tháng 2 2019

\(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+...+\left|x+99\right|=100x\)

\(\left|x+1\right|\ge0;\left|x+2\right|\ge0;...;\left|x+99\right|\ge0\)

\(\Rightarrow100x\ge0\)

\(\Rightarrow x\ge0\)

\(\Rightarrow x+1+x+2+x+3+...+x+99=100x\)

\(\Rightarrow99x+1+2+3+...+99=100x\)

\(\Rightarrow99x+4950=100x\)

\(\Rightarrow-x=-4950\)

\(\Rightarrow x=4950\)

\(\left|x+\frac{1}{1\cdot2}\right|+\left|x+\frac{1}{2\cdot3}\right|+\left|x+\frac{1}{3\cdot4}\right|+...+\left|x+\frac{1}{49\cdot50}\right|=50x\)

\(\left|x+\frac{1}{1\cdot2}\right|\ge0;\left|x+\frac{1}{2\cdot3}\right|\ge0;...;\left|x+\frac{1}{49\cdot50}\right|\ge0\)

\(\Rightarrow50x\ge0\)

\(\Rightarrow x\ge0\)

\(\Rightarrow x+\frac{1}{1\cdot2}+x+\frac{1}{2\cdot3}+...+x+\frac{1}{49\cdot50}\)

\(\Rightarrow49x+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=50x\)

\(\Rightarrow49x+\frac{49}{50}=50x\)

tu lam 

4 tháng 2 2019

\(a;\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+..............+\left|x+99\right|=100x^{\left(1\right)}\)

Ta có \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+3\right|\ge0;.............;\left|x+99\right|\ge0\)

\(\Rightarrow VT\ge0\Rightarrow VP\ge0\Rightarrow100x\ge0\Rightarrow x\ge0\)

Với \(x\ge0\).Từ (1) \(\Rightarrow x+1+x+2+x+3+..................+x+99=100x\)

\(\Rightarrow\left(x+x+x+........+x\right)+\left(1+2+3+..........+99\right)=100x\)

\(\Rightarrow99x+4950=100x\)

\(\Rightarrow x=4950\)(t/m đk x > =  0)

\(\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+.........+\left|x+\frac{1}{49.50}\right|=50x^{(∗)}\)

\(\left|x+\frac{1}{1.2}\right|\ge0;\left|x+\frac{1}{2.3}\right|\ge0;............;\left|x+\frac{1}{49.50}\right|\ge0\)

\(\Rightarrow VT\ge0\Rightarrow VP\ge0\Rightarrow50x\ge0\Rightarrow x\ge0\)

Với x > = 0 .Từ (*) \(\Rightarrow x+\frac{1}{1.2}+x+\frac{1}{2.3}+............+x+\frac{1}{49.50}=50x\)

\(\Rightarrow\left(x+x+x+.......+x\right)+\left(\frac{1}{1.2}+\frac{1}{2.3}+...........+\frac{1}{49.50}\right)=50x\)

\(\Rightarrow49x+\left(1-\frac{1}{50}\right)=50x\)

\(\Rightarrow49x+\frac{49}{50}=50x\)

\(\Rightarrow x=\frac{49}{50}\)(t/m đk \(x\ge0\))

4 tháng 12 2019

Nhanh lên nhé

4 tháng 12 2019

Giups mnihf đi