Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Trường hợp 1: x<2
Pt sẽ là: 2-x+3-x=2
=>5-2x=2
=>2x=3
hay x=3/2(nhận)
Trường hợp 2: 2<=x<3
Pt sẽ là 2-x+x-3=2
=>-1=2(vô lý)
Trường hợp 3: x>=3
Pt sẽ là:
x-2+x-3=2
=>2x-5=2
=>2x=7
hay x=7/2(nhận)
b: Trường hợp 1: x<-2
Pt sẽ là:
-x-2-x+5=3
=>-2x+3=3
hay x=0(loại)
Trường hợp 2: -2<=x<5
Pt sẽ là x+2+5-x=3
=>7=3(vô lý)
Trường hợp 3: x>=5
Pt sẽ là x+2+x-5=3
=>2x-3=3
hay x=3(loại)
c: =>2|x-3|=12
=>|x-3|=6
=>x-3=6 hoặc x-3=-6
=>x=9 hoặc x=-3
Biểu thức \(C = - \frac{2}{3}{x^2} + 7x - 4\) là tam thức bậc hai
Biểu thức A không là tam thức bậc hai vì chứa \(\sqrt x \)
Biểu thức B không là tam thức bậc hai vì chứa \({x^4}\)
Biểu thức D không là tam thức bậc hai vì chứa \({\left( {\frac{1}{x}} \right)^2}\)
Bài 1:
a)\(\begin{cases}\left(x-3\right)^2+\left(y+2\right)^2=0\\\begin{cases}\left(x-3\right)^2\ge0\\\left(y+2\right)^2\ge0\end{cases}\end{cases}\)
\(\Rightarrow\begin{cases}\left(x-3\right)^2=0\\\left(y+2\right)^2=0\end{cases}\)\(\Rightarrow\begin{cases}x=3\\y=-2\end{cases}\)
b) tương tự
b) (x-12+y)200+(x-4-y)200= 0
\(\begin{cases}\left(x-12+y\right)^{200}+\left(x-4-y\right)^{200}=0\\\begin{cases}\left(x-12+y\right)^{200}\ge0\\\left(x-4-y\right)^{200}\ge0\end{cases}\end{cases}\)
\(\Rightarrow\begin{cases}\left(x-12+y\right)^{200}=0\\\left(x-4-y\right)^{200}=0\end{cases}\)\(\Rightarrow\begin{cases}x-12+y=0\\x-4-y=0\end{cases}\)\(\Rightarrow\begin{cases}x+y=12\left(1\right)\\x-y=4\left(2\right)\end{cases}\)
Trừ theo vế của (1) và (2) ta được:
\(2y=8\Rightarrow y=4\)\(\Rightarrow\begin{cases}x+4=12\\x-4=4\end{cases}\)\(\Rightarrow x=8\)
Vậy x=8; y=4
a: Sửa đề: sin x=4/5
cosx=-3/5; tan x=-4/3; cot x=-3/4
b: 270 độ<x<360 độ
=>cosx>0
=>cosx=1/2
tan x=căn 3; cot x=1/căn 3
Câu 1:
a: =(1+2-3-4)+(5+6-7-8)+...+(2013+2014-2015-2016)
=(-4)+(-4)+...+(-4)
=-4x504=-2016
b: \(B=\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot...\cdot\dfrac{195}{196}=\dfrac{1\cdot3\cdot2\cdot4\cdot...\cdot13\cdot15}{2\cdot3\cdot...\cdot14\cdot2\cdot3\cdot...\cdot14}=\dfrac{15}{14\cdot2}=\dfrac{15}{28}\)
Tìm x biết:
b/\(\left(2x+3\right)^2-\left(5x-4\right)\left(5x+4\right)=\left(x+5\right)^2-\left(3x-1\right)\left(7x+2\right)-\left(x^2-x+1\right)\)
<=> \(4x^2 +12x+9-25x^2+16-x^2-10x-25+21x^2+6x-7x-2+x^2-x+1=0\)
<=>0x-1=0
<=>0x=1 (vô lí) (dòng này không cần ghi thêm cũng được)
=> Không có giá trị x nào thỏa mãn
c/ \((1-3x)^2-(x-2)(9x+1)=(3x-4)(3x+4)-9(x+3)^2\)
<=>\(1-6x+9x^2-9x^2-x+18x+2-9x^2+16+9x^2+54x+81=0\)
<=> 65x+100=0
<=> x=\(\dfrac{-20}{13}\)
d/\((3x+4)(3x-4)-(2x+5)^2=(x-5)^2+(2x+1)^2-(x^2-2x)+(x-1)^2\)
<=> \(9x^2-16-4x^2-20x-25-x^2+10x-25-4x^2-4x-1+x^2+2x-x^2+2x-1=0\)
<=> -10x-68=0
<=> x=\(\dfrac{-34}{5}\)
Đặt A=|x + 1| + |x + 2| + |x + 3| + |x + 4| + |x + 5| = 2006x
Vì vế trái luôn \(\ge\)0 với mọi x
=>Vế phải luôn \(\ge\)0
=> 2006x \(\ge\) 0
=>x\(\ge\)0
=> x + 1 > 0; x + 2 > 0; x + 3 > 0; x + 4 > 0; x + 5 > 0
=> |x + 1| = x + 1; |x + 2| = x + 2; |x + 3| = x + 3; |x + 4| = x + 4; |x + 5| = x + 5
Khi đó A trở thành:
x+1+x+2+x+3+x+4+x+5=2006x
Ta có: 5x+15=2006x
15=2006x-5x
15=2001x
x=15/2001=5/667
Vậy x=5/667
|x+1|+|x+2|+|x+3|+|x+4|+|x+5|=2006x (1)
Vì |x+1| > 0 ;|x+2| > 0;|x+3| > 0;|x+4| > 0;|x+5| > 0
=>|x+1|+|x+2|+|x+3|+|x+4|+|x+5| > 0
=>2006x > 0=>x > 0
Do đó |x+1|=x+1;|x+2|=x+2;|x+3|=x+3;|x+4|=x+4;|x+5|=x+5
=> (1) trở thành : x+1+x+2+x+3+x+4+x+5=2006x
=>(x+x+x+x+x)+(1+2+3+4+5)=2006x
=>5x+15=2006x
=>2006x-5x=15=>2001x=15=>x=15/2001=5/667
Vậy x=5/667