Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>(x-2023)[(x-2023)^21-1]=0
=>x-2023=0 hoặc x-2023=1
=>x=2023 hoặc x=2024
a, 7\(x\).(2\(x\) + 10) =0
\(\left[{}\begin{matrix}x=0\\2x+10=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\2x=-10\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy \(x\in\) {-5; 0}
b, -9\(x\) : (2\(x\) - 10) = 0
9\(x\) = 0
\(x\) = 0
c, (4 - \(x\)).(\(x\) + 3) = 0
\(\left[{}\begin{matrix}4-x=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
Vậy \(x\in\) {-3; 4}
Lời giải:
$2^x+2^{x+1}+2^{x+2}+...+2^{x+2019}=2^{x+2023}-8$
$2^x(1+2+2^2+...+2^{2019})=2^{x+2023}-8$
Xét:
$A=1+2+2^2+...+2^{2019}$
$2A=2+2^2+2^3+...+2^{2020}$
$\Rightarrow A=2A-A=2^{2020}-1$
Khi đó:
$2^x.A=2^{x+2023}-8$
$2^x(2^{2020}-1)=2^{x+2023}-2^3$
$2^x(2^{2023}-2^{2020}+1)-2^3=0$
$2^x(2^{2020}.7+1)=2^3$
$x$ ra số sẽ khá xấu. Bạn coi lại.
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2022}{2023}\)
\(\Rightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2022}{2023}\)
\(\Rightarrow1-\dfrac{1}{x+1}=\dfrac{2022}{2023}\)
\(\Rightarrow\dfrac{1}{x+1}=1-\dfrac{2022}{2023}\)
\(\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{2023}\)
\(\Rightarrow x+1=2023\)
\(\Rightarrow x=2022\)
Vậy x = 2022
#kễnh
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{x.\left(x+1\right)}\)
= \(\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+...+\dfrac{x+1-x}{x.\left(x+1\right)}\)
= \(\dfrac{2}{1.2}-\dfrac{1}{1.2}+\dfrac{3}{2.3}-\dfrac{2}{2.3}+...+\dfrac{x+1}{x.\left(x+1\right)}-\dfrac{x}{x.\left(x+1\right)}\)
= \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\)
= \(1-\dfrac{1}{x+1}\) =\(\dfrac{2022}{2023}\)
= \(\dfrac{2023}{2023}-\dfrac{1}{x+1}=\dfrac{2022}{2023}\)
⇒ \(x+1=2023\)
\(x=2023-1=2022\)
a) \(27\cdot75+25\cdot27-150\cdot2023^0\)
\(=27\cdot\left(75+25\right)-150\cdot1\)
\(=27\cdot100-150\)
\(=2700-150\)
\(=2550\)
b) \(3^x+3^{x+1}+16\cdot4=2^2\cdot5^2\)
\(\Rightarrow3^x+3^x\cdot3=100-64\)
\(\Rightarrow3^x\cdot\left(1+3\right)=36\)
\(\Rightarrow3^x\cdot4=36\)
\(\Rightarrow3^x=36:4\)
\(\Rightarrow3^x=9\)
\(\Rightarrow3^x=3^2\)
\(\Rightarrow x=2\)
a) 27.75 + 25.27 - 150.2023⁰
= 27.(75 + 25) - 150.1
= 27.100 - 150
= 2700 - 150
= 2550
b) 3ˣ + 3ˣ⁺¹ + 16.4 = 2².5²
3ˣ.(1 + 3) + 64 = 4.25
3ˣ.4 + 64 = 100
3ˣ.4 = 100 - 64
3ˣ.4 = 36
3ˣ = 36 : 4
3ˣ = 9
3ˣ = 3²
x = 2
\(\Rightarrow x+x+...+x+1+2+...+20=2023\)
\(\Rightarrow10x+20.21:2=2023\Rightarrow10x+210=2023\Rightarrow10x=1813\Rightarrow x=\dfrac{1813}{10}\)
`@` `\text {Ans}`
`\downarrow`
`x(x-2023) = 0`
`=>`
`TH1: x = 0`
`TH2: x - 2023 = 0`
`=> x = 0 + 2023`
`=> x = 2023`
Vậy, `x \in {0; 2023}.`
x.(x - 2023) = 0
⇒ x = 0 hoặc x - 2023 = 0
*) x - 2023 = 0
x = 0 + 2023
x = 2023
Vậy x = 0; x = 2023