Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow2x=-7\)
hay \(x=-\dfrac{7}{2}\)
b: Ta có: \(\left(x-2\right)^3-\left(x-4\right)\left(x^2+4x+16\right)+6\left(x+1\right)^2=49\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+64+6\left(x+1\right)^2=49\)
\(\Leftrightarrow-6x^2+12x+56+6x^2+12x+6=49\)
\(\Leftrightarrow24x=-13\)
hay \(x=-\dfrac{13}{24}\)
a) x^3 - 64 - x^3 +6x = 2
(x^3 - x^3) + 6x = 2+64 quy tắc chuyển vế nhé bạn
6x = 66
x = 66:11
x = 6
Bài 1:
a) \(\Rightarrow3x^2+3x-2x^2-4x+x+1=0\)
\(\Rightarrow x^2=-1\left(VLý\right)\Rightarrow S=\varnothing\)
b) \(\Rightarrow\left(x-2020\right)\left(2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2}\end{matrix}\right.\)
c) \(\Rightarrow\left(x-10\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
d) \(\Rightarrow\left(x+4\right)^2=0\Rightarrow x=-4\)
e) \(\Rightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)
f) \(\Rightarrow\left(5x-4\right)\left(5x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\)
Bài 2:
a) \(\Rightarrow3x\left(x^2-4\right)=0\Rightarrow3x\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
b) \(\Rightarrow x\left(x-2\right)+5\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
Gọi \(P\left(x\right)=ax^3+bx^2+cx+d\)
Ta có \(P\left(x\right):\left(x-1\right)R6\Leftrightarrow P\left(1\right)=a+b+c+d=6\left(1\right)\)
\(P\left(x\right):\left(x+2\right)R6\Leftrightarrow P\left(-2\right)=-8a+4b-2c+d=-2\left(2\right)\)
\(P\left(x\right):\left(x-4\right)R6\Leftrightarrow P\left(4\right)=64a+16b+4c+d=6\left(3\right)\)
\(P\left(-1\right)=16\Leftrightarrow-a+b-c+d=16\left(4\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\left(4\right)\Leftrightarrow\left\{{}\begin{matrix}a+b+c+d=6\\-8a+4b-2c+d=6\\64a+16b+4c+d=6\\-a+b-c+d=16\end{matrix}\right.\)
\(\Leftrightarrow a=1;b=-3;c=-6;d=14\)
Vậy \(P\left(x\right)=x^3-3x^2-6x+14\)
a) Rút gọn được VT = 9x + 7. Từ đó tìm được x = 1.
b) Rút gọn được VT = 2x + 8. Từ đó tìm được x = 7 2 .
\(\left(x-4\right)\left(x^2+4x+16\right)-x\left(x^2-6\right)=2\)
\(\Rightarrow x^3-64-x^3+6x=2\)
\(\Rightarrow-64+6x=2\Rightarrow6x=66\Rightarrow x=11\)
1: =>x^2+4x-21=0
=>(x+7)(x-3)=0
=>x=3 hoặc x=-7
2: =>(2x-5-4)(2x-5+4)=0
=>(2x-9)(2x-1)=0
=>x=9/2 hoặc x=1/2
3: =>x^3-9x^2+27x-27-x^3+27+9(x^2+2x+1)=15
=>-9x^2+27x+9x^2+18x+9=15
=>18x=15-9-27=-21
=>x=-7/6
6: =>4x^2+4x+1-4x^2-16x-16=9
=>-12x-15=9
=>-12x=24
=>x=-2
7: =>x^2+6x+9-x^2-4x+32=1
=>2x+41=1
=>2x=-40
=>x=-20
b) (x – 4). (x2 + 4x + 16) – x. (x2 - 6) = 2
⇔ x3 + 4x2 + 16x – 4x2 – 16x – 64 – (x3 - 6x ) – 2= 0
⇔ x3 + 4x2 + 16x – 4x2 – 16x – 64 – x3 + 6x – 2= 0
⇔ 6x – 66 =0
⇔ 6x = 66
⇔ x = 66 : 6
⇔ x = 11
Vậy x = 11