Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x biết :a) ( 2x - 3 ).( x +1 ) > 0b) ( x + 5 ).(x-7) < 0c) | 2x - 3 | + 8 = 10d) ( 2x + 5 ) . | x -8 | . ( x2 + 1 ) = 0
|5\(x\) - 4| = |\(x+2\)|
\(\left[{}\begin{matrix}5x-4=x+2\\5x-4=-x-2\end{matrix}\right.\)
\(\left[{}\begin{matrix}4x=6\\6x=2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
vậy \(x\in\) { \(\dfrac{1}{3};\dfrac{3}{2}\)}
|2\(x\) - 3| - |3\(x\) + 2| = 0
|2\(x\) - 3| = | 3\(x\) + 2|
\(\left[{}\begin{matrix}2x-3=3x+2\\2x-3=-3x-2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-5\\x=\dfrac{1}{5}\end{matrix}\right.\)
vậy \(x\in\){ -5; \(\dfrac{1}{5}\)}
Mk sẽ giải từng câu
\(a)\) \(\left(3x+1\right)\left(x-2\right)>0\)
Trường hợp 1 :
\(\hept{\begin{cases}3x+1>0\\x-2>0\end{cases}\Leftrightarrow\hept{\begin{cases}3x>-1\\x>2\end{cases}\Leftrightarrow}\hept{\begin{cases}x>\frac{-1}{3}\\x>2\end{cases}}}\)
\(\Rightarrow\)\(x>2\)
Trường hợp 2 :
\(\hept{\begin{cases}3x+1< 0\\x-2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}3x< -1\\x< 2\end{cases}\Leftrightarrow}\hept{\begin{cases}x< \frac{-1}{3}\\x< 2\end{cases}}}\)
\(\Rightarrow\)\(x< \frac{-1}{3}\)
Vậy \(x>2\) hoặc \(x< \frac{-1}{3}\) thì \(\left(3x+1\right)\left(x-2\right)>0\)
Chúc bạn học tốt ~
a) (3x+1).(x-2)>0
TH1: 3x+1>0 TH2: x-2>0
3x > -1 x>2
x>-1/3
Vậy x>2
B1: Đk: 5x ≥ 0 => x ≥ 0
Vì |x + 1| ≥ 0 => |x + 1| = x + 1
|x + 2| ≥ 0 => |x + 2| = x + 2
|x + 3| ≥ 0 => |x + 3| = x + 3
|x + 4| ≥ 0 => |x + 4| = x + 4
=> |x + 1| + |x + 2| + |x + 3| + |x + 4| = 5x
=> x + 1 + x + 2 + x + 3 + x + 4 = 5x
=> 4x + 10 = 5x
=> x = 10
B2: Ta có: |x - 2018| = |2018 - x|
=> A=|x + 2000| + |2018 - x| ≥ |x + 2000 + 2018 - x| = |4018| = 4018
Dấu " = " xảy ra <=> (x + 2000)(x - 2018) ≥ 0
Th1: \(\hept{\begin{cases}x+2000\ge0\\x-2018\ge0\end{cases}\Rightarrow}\hept{\begin{cases}x\ge-2018\\x\le2018\end{cases}}\Rightarrow-2018\le x\le2018\)
Th2: \(\hept{\begin{cases}x+2000\le0\\x-2018\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\le-2018\\x\ge2018\end{cases}}\)(vô lý)
Vậy GTNN của A = 4018 khi -2018 ≤ x ≤ 2018
B3:
a, Vì |x + 1| ≥ 0 ; |2y - 4| ≥ 0
=> |x + 1| + |2y - 4| ≥ 0
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+1=0\\2y-4=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
Vậy...
b, Vì |x - y + 1| ≥ 0 ; (y - 3)2 ≥ 0
=> |x - y + 1| + (y - 3)2 ≥ 0
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-y+1=0\\y-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x-y=-1\\y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x-3=-1\\y=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=3\end{cases}}\)
Vậy...
c, Vì |x + y| ≥ 0 ; |x - z| ≥ 0 ; |2x - 1| ≥ 0
=> |x + y| + |x - z| + |2x - 1| ≥ 0
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+y=0\\x-z=0\\2x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=0\\x=z\\x=\frac{1}{2}\end{cases}\Leftrightarrow}}\hept{\begin{cases}\frac{1}{2}+y=0\\x=z=\frac{1}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{-1}{2}\\x=z=\frac{1}{2}\end{cases}}\)
\(\left(x-2\right)\left(x-3\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2>0\Rightarrow x>2\\x-3>0\Rightarrow x>3\end{matrix}\right.\\\left\{{}\begin{matrix}x-2< 0\Rightarrow x< 2\\x-3< 0\Rightarrow x< 3\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow x>2;x< 3\)
\(\dfrac{x+1}{x+2}< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1>0\Rightarrow x>-1\\x+2< 0\Rightarrow x< -2\end{matrix}\right.\\\left\{{}\begin{matrix}x+1< 0\Rightarrow x< -1\\x+2>0\Rightarrow x>-2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-2< x< -1\)
\(\left(x-1\right)\left(x+3\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\Rightarrow x>1\\x+3< 0\Rightarrow x< -3\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\Rightarrow x< 1\\x+3>0\Rightarrow x>-3\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-3< x< 1\)
\(\dfrac{x+3}{x-1}< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3>0\Rightarrow x>-3\\x-1< 0\Rightarrow x< 1\end{matrix}\right.\\\left\{{}\begin{matrix}x+3< 0\Rightarrow x< -3\\x-1>0\Rightarrow x>1\end{matrix}\right.\end{matrix}\right.\)
\(\dfrac{x+5}{x+8}>1\)
\(\Rightarrow x+5>x+8\)
(đến đây chịu)
\(\Rightarrow-3< x< 1\)
cảm ơn bạn nhiều!!!!