Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> (1/3-2x)2 = (1/4)2
=> 1/3-2x = 1/4 hoặc 1/3-2x = -1/4
+) 1/3-2x = 1/4 => 2x = 1/3-1/4 => 2x = 1/12 => x = 1/12 : 2 = 1/24
+) 1/3-2x = -1/4 => 2x = 1/3-(-1/4) => 2x = 7/12 => x = 7/12 : 2 = 7/24
Vậy ......
bn ghi vương nguyên nhưng sao lại đăng hình thiên tỷ hay bn hâm mộ cả 2 hả ^_^
\(\left(x-\frac{1}{3}\right)\left(y-\frac{1}{2}\right)\left(z-5\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\\y=\frac{1}{2}\\z=5\end{cases}}\)
Vì \(z+3=y+1\Rightarrow y=7\)
Lại có \(y+1=x+2\Rightarrow x=8-2=6\)
Vậy x = 6 ; y = 7 ; z = 5
a) \(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
<=> \(\left(\frac{x-1}{2009}-1\right)+\left(\frac{x-2}{2008}-1\right)-\left(\frac{x-3}{2007}-1\right)-\left(\frac{x-4}{2006}-1\right)=0\)
<=> \(\frac{x-2010}{2009}+\frac{x-2010}{2008}-\frac{x-2010}{2007}-\frac{x-2010}{2006}=0\)
<=> \(\left(x-2010\right)\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\right)=0\)
<=> x - 2010 = 0 Vì \(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\ne0\)
<=> x = 2010
\(VP=\frac{1}{2\left(a+3\right)}+\frac{1}{2\left(a+5\right)}=\frac{2\left(a+5\right)}{2\left(a+3\right)\left(a+5\right)}+\frac{2\left(a+3\right)}{2\left(a+3\right)\left(a+5\right)}\)
\(=\frac{2\left(a+5\right)}{4\left(a+3\right)\left(a+5\right)}+\frac{2\left(a+3\right)}{4\left(a+3\right)\left(a+5\right)}=\frac{2\left(a+5\right)+2\left(a+3\right)}{4\left(a+3\right)\left(a+5\right)}=\frac{2\left[\left(a+3\right)+\left(a+5\right)\right]}{4\left(a+3\right)\left(a+5\right)}=\frac{\left(a+3\right)+\left(a+5\right)}{2\left(a+3\right)\left(a+5\right)}\)
\(=\frac{\left(a+a\right)+\left(3+5\right)}{2\left(a+3\right)\left(a+5\right)}=\frac{2a+8}{2\left(a+3\right)\left(a+5\right)}=\frac{2\left(a+4\right)}{2\left(a+3\right)\left(a+5\right)}=\frac{a+4}{\left(a+3\right)\left(a+5\right)}\)
\(VT=\frac{x-2}{\left(a+3\right)\left(a-5\right)}\)
\(\Rightarrow\frac{x-2}{\left(a+3\right)\left(a-5\right)}=\frac{a+4}{\left(a+3\right)\left(a+5\right)}\)
\(\Rightarrow\frac{x-2}{a+4}=\frac{\left(a+3\right)\left(a-5\right)}{\left(a+3\right)\left(a+5\right)}\Rightarrow\frac{x-2}{a+4}=\frac{a-5}{a+5}\Rightarrow\left(x-2\right)\left(a+5\right)=\left(a-5\right)\left(a+4\right)\)
chịu
\(\frac{1}{16}=\left(\frac{1}{4}\right)^2=\left(-\frac{1}{4}\right)^2\)
=> \(\left(\frac{1}{3}-2x\right)=\frac{1}{4}\)hoặc \(\left(-\frac{1}{4}\right)\)
*) \(\left(\frac{1}{3}-2x\right)=\frac{1}{4}\)
\(\Rightarrow2x=\frac{1}{3}-\frac{1}{4}=\frac{1}{12}\Rightarrow x=\frac{1}{12}:2=\frac{1}{24}\)
*) \(\left(\frac{1}{3}-2x\right)=\left(-\frac{1}{4}\right)\)
\(\Rightarrow2x=\frac{1}{3}-\left(-\frac{1}{4}\right)=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\Rightarrow x=\frac{7}{12}:2=\frac{7}{24}\)
Vậy \(x\in\left\{\frac{1}{24};\frac{7}{24}\right\}\)