Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{1.2}{99.100}\)
\(=\frac{2}{9900}=\frac{1}{4950}\)
1-1/x+1=2015/2016
=>1/x+1=1-2015/2016=1/2016
=>x+1=2016=>x=2015
mình không ghi lại đề nha:
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{2016}\)
<=>\(1-\frac{1}{x+1}=\frac{2015}{2016}\)
<=>\(\frac{x}{x+1}=\frac{2015}{2016}\)
=>x=
Đến đó bạn tự giải tiếp ha
A = 5(1/1.2 + 1/2.3 +......+ 1/99.100)
A = 5( 1 - 1/2 + 1/2 - 1/3 +........+ 1/99 - 1/100)
A = 5( 1 - 1/100)
A = 5 . 99/100
A = 99/20
** k mk nha!
\(\frac{5}{1\times2}+\frac{5}{2\times3}+...+\frac{5}{99\times100}=5\left(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\right)=5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)=5\left(1-\frac{1}{100}\right)=5\times\frac{99}{100}=\frac{99}{20}=4\frac{19}{20}\)
a)1.2.3.4...9-1.2.3.4...8-1.2.3.4...8.8
=1.2.3.4...8(9-1-8)
=1.2.3.4...8.0
=0
b)(3.4.216)2/11.123.411-169=(3.22.216)2/11.213.222-236=32.24.232/11.235-236=32.226/235.(11-2)
=32.236/235.9=32.236/235.32=2
c)70.(131313/565656+131313/727272+131313/909090
=70.(13/56+13/72+13/90)
=70.39/70=39
d)1/4.9+1/9.14+1/14.19+...+1/64.69
=4/4.9.4+4/9.4.14+4/14.19.4+...+4/64.69.4.
=1/4.(4/4.9+4/9.14+4/14.19+...+4/64.69)
=1/4.(1/4-1/9+1/9-1/14+1/14-1/19+...+1/64-1/69)
=1/4.(1/4-1/69)
=1/4.65/276=65/1104
~~~~~~~~Chúc bạn học giỏi nhé !~~~~~~~~
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+..+\frac{1}{x\left(x+1\right)}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\)
\(=1-\frac{1}{x+1}\)
\(=\frac{x+1-1}{x+1}=\frac{x}{x+1}\)
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{x.\left(x+1\right)}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\)
\(=1-\frac{1}{x+1}\)
\(=\frac{x+1}{x+1}-\frac{1}{x+1}\)
\(=\frac{x}{x+1}\)
Ta có : S = \(\frac{5.2^{30}.6^3.3^{15}-2^3.8^9.3^{17}.21}{21.2^{29}.3^{16}.4-2^{29}.\left(3^4\right)^5}=\frac{5.2^{30}.\left(2.3\right)^3.3^{15}-2^3.\left(2^3\right)^9.3^{17}.3.7}{3.7.2^{29}.3^{16}.2^2-2^{29}.3^{20}}=\frac{5.2^{33}.3^{18}-2^{30}.3^{18}.7}{3^{17}.7.2^{31}-2^{29}.3^{20}}\)
\(=\frac{2^{30}.3^{18}.\left(5.2^3-7\right)}{3^{17}.2^{29}.\left(7.2^2-3^3\right)}=2.3.33=198\)