K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2018

nốt ý b:

\(\left(x-1\right)^3+1+3x\left(x-4\right)=0\)

\(\Leftrightarrow x^3-3x^2+3x-1+1+3x^2-12x=0\)

\(\Leftrightarrow x^3-9x=0\Leftrightarrow x\left(x^2-9\right)=0\)

\(\Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)

Vậy ..............

6 tháng 9 2018

\(a,x\left(x-2012\right)-2013x+2012.2013=0\)

\(=x\left(x-2012\right)+2013\left(-x+2012\right)=0\)

\(\Rightarrow x\left(x-2012\right)-2013\left(x-2012\right)=0\)

\(\Rightarrow\left(x-2013\right)\left(x-2012\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2013=0\\x-2012=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2013\\x=2012\end{matrix}\right.\)

Vậy...

16 tháng 9 2023

\(Bài.1:\\ a,104^2-16=104^2-4^2=\left(104+4\right)\left(104-4\right)=108.100=10800\\ b,9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)\\ =\left(9.2\right)^8-\left(18^8-1\right)=18^8-18^8+1=1\\ c,999^3+3.999^2+3.999+1\\ =999^3+3.999^2.1+3.999.1^2+1^3=\left(999+1\right)^3=1000^3=1000000000\\ d,42^3-6.42^2+12.42-8\\ =42^3-3.42^2.2+3.42.2^2-2^3\\ =\left(42-2\right)^3=40^3=64000\)

16 tháng 9 2023

Bài 1

a) 104² - 16

= 104² - 4²

= (104 - 4)(104 + 4)

= 100.108

= 10800

b) 9⁸.2⁸ - (18⁴ - 1)(18⁴ + 1)

= 18⁸ - (18⁸ - 1)

= 18⁸ - 18⁸ + 1

= 1

c) 999³ + 3.999² + 3.999 + 1

= (999 + 1)³

= 1000³

= 1000000000

d) 42³ - 6.42² + 12.42 - 8

= (42 - 2)³

= 40³

= 64000

9 tháng 11 2017

Ta có : 3x(2x - 7) - (6x + 1)(x - 15) - 2010 = 0

=> 6x2 - 21x - (6x+ x - 90x - 15) - 2010 = 0

=> 6x2 - 21x - 6x2 + 89x + 15 - 2010 = 0

=> 68x - 1995 = 0

 ? 

b) 2x(x - 2012) - x + 2012 = 0

=> 2x(x - 2012) - (x - 2012) = 0

=> (x - 2012) (2x - 1) = 0

⇔[

x−2012=0
2x−1=0

⇔[

x=2012
2x=1

⇔[

x=2012
x=12 

Vậy x = {2012;12 }

Ta có : 3x(2x - 7) - (6x + 1)(x - 15) - 2010 = 0

=> 6x2 - 21x - (6x+ x - 90x - 15) - 2010 = 0

=> 6x2 - 21x - 6x2 + 89x + 15 - 2010 = 0

=> 68x - 1995 = 0

 ? 

b) 2x(x - 2012) - x + 2012 = 0

=> 2x(x - 2012) - (x - 2012) = 0

=> (x - 2012) (2x - 1) = 0

\(\Leftrightarrow\orbr{\begin{cases}x-2012=0\\2x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2012\\2x=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2012\\x=\frac{1}{2}\end{cases}}\)

Vậy x = \(\left\{2012;\frac{1}{2}\right\}\)

29 tháng 11 2023

a: \(x^3-4x^2-x+4=0\)

=>\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)

=>\(x^2\left(x-4\right)-\left(x-4\right)=0\)

=>\(\left(x-4\right)\left(x^2-1\right)=0\)

=>\(\left[{}\begin{matrix}x-4=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;1;-1\right\}\)

b: Sửa đề: \(x^3+3x^2+3x+1=0\)

=>\(x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=0\)

=>\(\left(x+1\right)^3=0\)

=>x+1=0

=>x=-1

c: \(x^3+3x^2-4x-12=0\)

=>\(\left(x^3+3x^2\right)-\left(4x+12\right)=0\)

=>\(x^2\cdot\left(x+3\right)-4\left(x+3\right)=0\)

=>\(\left(x+3\right)\left(x^2-4\right)=0\)

=>\(\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)

=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)

d: \(\left(x-2\right)^2-4x+8=0\)

=>\(\left(x-2\right)^2-\left(4x-8\right)=0\)

=>\(\left(x-2\right)^2-4\left(x-2\right)=0\)

=>\(\left(x-2\right)\left(x-2-4\right)=0\)

=>(x-2)(x-6)=0

=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

 

I don't now 

sorry 

...................

nha

27 tháng 7 2018

b)  \(\left(3x-2\right)\left(x+1\right)^2\left(3x+8\right)=-16\)

\(\Leftrightarrow\)\(\left(3x-2\right)\left(3x+3\right)^2\left(3x+8\right)+144=0\)

Đặt:  \(3x+3=a\)pt trở thành:

\(\left(a-5\right)a^2\left(a+5\right)+144=0\)

\(\Leftrightarrow\)\(a^4-25a^2+144=0\)

\(\Leftrightarrow\)\(\left(a-4\right)\left(a-3\right)\left(a+3\right)\left(a+4\right)=0\)

đến đây bạn tìm a rồi tính x

c)  \(\left(4x-5\right)\left(2x-3\right)\left(x-1\right)=9\)

\(\Leftrightarrow\)\(\left(4x-5\right)\left(4x-6\right)\left(4x-4\right)-72=0\)

Đặt   \(4x-5=a\)pt trở thành:

\(a\left(a-1\right)\left(a+1\right)-72=0\)

\(\Leftrightarrow\)\(a^3-a-72=0\)

p/s: ktra lại đề

d)  \(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\)

\(\Leftrightarrow\)\(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2-4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)=0\)

\(\Leftrightarrow\)\(\left[\left(2x^2+x-2013\right)-2\left(x^2-5x-2012\right)\right]^2=0\)

\(\Leftrightarrow\)\(\left(11x+2011\right)^2=0\)

đến đây làm nốt

16 tháng 11 2021

a: \(x\in\left\{0;25\right\}\)

c: \(x\in\left\{0;5\right\}\)

4 tháng 11 2018

\(A.x^2-16x=0\)

\(x^2-\left(4x\right)^2=0\)

\(\left(x-4x\right)\left(x+4x\right)=0\)

\(\left(-3x\right)\left(5x\right)=0\)

\(\Rightarrow\) \(-3x=0\) hoặc \(5x=0\)

\(x=\dfrac{0}{-3}\) hoặc \(x=\dfrac{0}{5}\)

Vậy \(x=0\) hoặc \(x=0.\)

B. 4x2 - 4x + 1 = 0

(2x)2 - (2x)2 + 12 = 0

(2x - 2x + 1 ) (2x + 2x +1) = 0

1 (4x + 1) =0

=> 1 (4x + 1) =0

4x + 1 = 0

4x = 0-1

Vậy x = \(\dfrac{-1}{4}.\)

C. (3x-1)2 - (2x+3)2 = 0

(3x -1 -2x +3) (3x -1 +2x +3) = 0

(x + 2)(5x + 2) = 0

=> x + 2 =0 hoặc 5x + 2 =0

x = 0 - 2 hoặc 5x = 0 - 2

Vậy x = -2 hoặc x = \(\dfrac{-2}{5}.\)

Còn về câu d thì mình hơi phân vân, tại mình dốt toán lắm

4 tháng 11 2018

a/ \(x^2-16x=0\)

\(\Leftrightarrow x\left(x-16\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-16=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)

Vậy...

b/ \(4x^2-4x+1=0\)

\(\Leftrightarrow\left(2x-1\right)^2=0\)

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy..

c/ \(\left(3x-1\right)^2-\left(2x+3\right)^2=0\)

\(\Leftrightarrow\left(3x-1-2x-3\right)\left(3x-1+2x+3\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(5x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\5x+2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{2}{5}\end{matrix}\right.\)

Vậy...

d/ \(2013x^2-2014x+1=0\)

\(\Leftrightarrow2013x^2-x-2013x+1=0\)

\(\Leftrightarrow x\left(2013x-1\right)-\left(2013x-1\right)=0\)

\(\Leftrightarrow\left(2013x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2013x-1=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2013}\\x=1\end{matrix}\right.\)

Vậy..