Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=>/x/-4-2+/-x/=1/3/x/-5
<=>/x/-6+/-x/=1,3/x/-5
<=>-0,3/x/+/-x/=1
Th1 với x<0
=>/x/=-x ; /-x/=x
khi đó ta có:
-0,3.(-x) + x=1
<=>0,3x + x=1
<=>1,3x=1
<=>x=10/13
TH2 \(x\ge0\)
/x/=x;/-x/=-x
Khi đó ta có
-0,3x-x=1
<=>-1,3x=1
<=>x=-10/13
k nha
\(2x^2+4-\left(x^2-\frac{3}{2}\right)=\left(-3+4x^2\right)+\left(-\frac{4x^2}{3}+1\right)\)
\(2x^2-x^2+4+\frac{3}{2}=\)\(-3+1+4x^2-\frac{4x^2}{3}\)
\(x^2+\frac{11}{2}=-2+-\frac{16x^2}{3}\)
\(x^2+\frac{16x^2}{3}=\frac{-11}{2}-2=-\frac{15}{2}\)
\(\frac{19x^2}{3}=-\frac{15}{2}\)
\(19x^2=\frac{-15}{2}.3=-\frac{45}{2}\)
\(x^2=\frac{-45}{2}:19=-\frac{45}{38}\)
a) Đặt A(x)=0
\(\Leftrightarrow-4x-5=0\)
\(\Leftrightarrow-4x=5\)
hay \(x=-\dfrac{5}{4}\)
b) Đặt B(x)=0
\(\Leftrightarrow3\left(2x-1\right)-2\left(x+1\right)=0\)
\(\Leftrightarrow6x-3-2x-2=0\)
\(\Leftrightarrow4x=5\)
hay \(x=\dfrac{5}{4}\)
c: Ta có: \(\left|x+\dfrac{5}{6}\right|:\dfrac{4}{5}=\dfrac{3}{8}\)
\(\Leftrightarrow\left|x+\dfrac{5}{6}\right|=\dfrac{3}{8}\cdot\dfrac{4}{5}=\dfrac{3}{10}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{5}{6}=\dfrac{3}{10}\\x+\dfrac{5}{6}=-\dfrac{3}{10}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-8}{15}\\x=-\dfrac{17}{15}\end{matrix}\right.\)
a) \(\left|x-7\right|\ge x-7\Rightarrow A\ge x-7+3-x=-4\)
Dấu "=" xảy ra <=> \(x-7\ge0\Leftrightarrow x\ge7\)
b)\(\left|x+7\right|\ge x+7;\left|x+3\right|\ge0;\left|x+1\right|\ge-x-1\Rightarrow B\ge x+7+0-x-1=6\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+7\ge0\\x+3=0\\x+1\le0\end{cases}\Leftrightarrow x=-3}\)
c) \(\left|2-x\right|\ge x-2;\left|5-x\right|\ge5-x\Rightarrow C\ge x-2+5-x=3\)
Dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}2-x\le0\\5-x\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge2\\x\le5\end{cases}}\)