K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2023

a) \(2^x=8\)

⇔ \(2^x=2^3\)

⇒ \(x=3\)

b) \(3^x=27\)

⇔ \(3^x=3^3\)

⇒ \(x=3\)

c) \(\left(-\dfrac{1}{2}\right)x=\left(-\dfrac{1}{2}\right)^4\)

⇔ \(x=\left(-\dfrac{1}{2}\right)^4\div\left(-\dfrac{1}{2}\right)\)

⇔ \(x=\left(-\dfrac{1}{2}\right)^3\)

d) \(x\div\left(-\dfrac{3}{4}\right)=\left(-\dfrac{3}{4}\right)^2\)

⇔ \(x=\left(-\dfrac{3}{4}\right)^2\cdot\left(-\dfrac{3}{4}\right)\)

⇔ \(x=\left(-\dfrac{3}{4}\right)^3=-\dfrac{27}{64}\)

d) \(\left(x+1\right)^3=-125\)

⇔ \(\left(x+1\right)^3=\left(-5\right)^3\)

⇔ \(x+1=-5\)

⇔ \(x=-5-1=-6\)

2:

a: (x-1,2)^2=4

=>x-1,2=2 hoặc x-1,2=-2

=>x=3,2(loại) hoặc x=-0,8(loại)

b: (x-1,5)^2=9

=>x-1,5=3 hoặc x-1,5=-3

=>x=-1,5(loại) hoặc x=4,5(loại)

c: (x-2)^3=64

=>(x-2)^3=4^3

=>x-2=4

=>x=6(nhận)

14 tháng 4 2019

b

\(\left|6+x\right|\ge0;\left(3+y\right)^2\ge0\Rightarrow\left|6+x\right|+\left(3+y\right)^2\ge0\)

Suy ra \(\left|6+x\right|+\left(3+y\right)^2=0\)\(\Leftrightarrow\hept{\begin{cases}6+x=0\\3+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-6\\y=-3\end{cases}}\)

14 tháng 4 2019

a

Ta có:\(\left|3x-12\right|=3x-12\Leftrightarrow3x-12\ge0\Leftrightarrow3x\ge12\Leftrightarrow x\ge4\)

\(\left|3x-12\right|=12-3x\Leftrightarrow3x-12< 0\Leftrightarrow3x< 12\Leftrightarrow x< 4\)

Với \(x\ge4\) ta có:

\(3x-12+4x=2x-2\)

\(\Rightarrow5x=10\)

\(\Rightarrow x=2\left(KTMĐK\right)\)

Với  \(x< 4\) ta có:

\(12-3x+4x=2x-2\)

\(\Rightarrow10=x\left(KTMĐK\right)\)

a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:

X/3 = y/4 = x/3 + y/4 = 28/7 = 4

=> x = 4 × 3 = 12

=> y = 4 × 4 = 16

Vậy x = 12, y = 16

B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:

X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1

=> x = -1 × 2 = -2

=> y = -1 × -5 = 5

Vậy x = -2, y = 5

C) làm tương tự như bài a, b

9 tháng 12 2021

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

x8=y12=z15=x+y−z8+12−15=105=2x8=y12=z15=x+y−z8+12−15=105=2

Do đó: x=16; y=24; z=30

10 tháng 2 2016

bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 =>  x-1/3=y-2/4=z-3/5 

áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1

do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương t

 

 

24 tháng 3 2021

Bài 1: 

a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )

22 tháng 5 2021

cảm ơn mọi người nhìu nha!!!

16 tháng 3 2023

\(\dfrac{x-2}{x-3}=\dfrac{x+4}{x-2}\left(x\ne3;x\ne2\right)\)

suy ra

`(x-2)^2 =(x+4)(x-3)`

`<=> x^2 -4x+4=x^2 -3x+4x-12`

`<=> x^2 -x^2 -4x+3x-4x+4+12=0`

`<=> -5x +16=0`

`<=> -5x=-16`

`<=> x=16/5(tm)`

16 tháng 3 2023

\(\dfrac{x-2}{x-3}=\dfrac{x+4}{x-2}\\ \left(x-2\right)\left(x-2\right)=\left(x-3\right)\left(x+4\right)\\ x^2-2x-2x+4=x^2-3x+4x-12\\ -4x+4=x-12\\ -4x-x=-4-12\\ -5x=-16\\ x=\dfrac{16}{5}\left(t/m\right)\)

20 tháng 11 2020

a, Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{3}=\frac{y}{-2}=\frac{2x+5y}{2.3+5.\left(-2\right)}=-\frac{12}{-4}=3\)

\(x=-3;y=6\)

b, Theo bài ra ta có : \(x:y=4:5\Leftrightarrow\frac{x}{4}=\frac{y}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{4}=\frac{y}{5}=\frac{x-y}{4-5}=\frac{13}{-1}=-13\)

\(x=-52;y=-65\)

c, Theo bài ra ta có: \(4x=7y\Leftrightarrow\frac{x}{7}=\frac{y}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{7}=\frac{y}{4}=\frac{x-y}{7-4}=\frac{12}{3}=4\)

\(x=28;y=16\)

16 tháng 7 2018

mở dấu trị tuyệt đối ra rồi tính như bình thường