Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-\frac{1}{3}\right)^2-\frac{1}{4}=0\)
\(\Leftrightarrow\left(x-\frac{1}{3}\right)^2=\frac{1}{4}\)
\(\Leftrightarrow\left(x-\frac{1}{3}\right)^2=\left(\frac{1}{2}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{3}=\frac{1}{2}\\x-\frac{1}{3}=\frac{-1}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{6}\\x=\frac{-1}{6}\end{cases}}}\)
Vậy x= 5/6 hoặc -1/6
b) - Nếu x=0 thì \(5^y=2^0+624=1+624=625=5^4\Rightarrow y=4\left(y\in N\right)\)
- Nếu x \(\ne\) 0 thì vế trái là số chẵn , vế phải là số lẻ \(\forall x;y\inℕ\) ( vô lí)
Vậy x=0, y=4
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)\div2}=\frac{2001}{2003}\)
\(\frac{1}{2}\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)\div2}\right)=\frac{1}{2}\cdot\frac{2001}{2003}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)
\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{2001}{4006}\)
\(\frac{1}{x+1}=\frac{1}{2003}\)
\(\Rightarrow x+1=2003\)
\(x=2002\)
Vậy x = 2002
Ta có: \(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{x\left(x+1\right):2}=\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=2\left(\frac{1}{2}-\frac{1}{x+1}\right)=1-\frac{2}{x+1}=\frac{2009}{2011}\)
\(\Rightarrow x=2010\).
Chúc em học tập tốt :)
Ta có :
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)}=\frac{2003}{2005}\)
\(\Leftrightarrow\)\(1+2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2003}{2005}\)
\(\Leftrightarrow\)\(1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2003}{2005}\)
\(\Leftrightarrow\)\(1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2003}{2005}\)
\(\Leftrightarrow\)\(1+2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2003}{2005}\)
\(\Leftrightarrow\)\(1+1-\frac{2}{x+1}=\frac{2003}{2005}\)
\(\Leftrightarrow\)\(\frac{2}{x+1}=2-\frac{2003}{2005}\)
\(\Leftrightarrow\)\(\frac{2}{x+1}=\frac{2007}{2005}\)
\(\Leftrightarrow\)\(x+1=2:\frac{2007}{2005}\)
\(\Leftrightarrow\)\(x+1=\frac{4010}{2007}\)
\(\Leftrightarrow\)\(x=\frac{4010}{2007}-1\)
\(\Leftrightarrow\)\(x=\frac{2003}{2007}\)
Vậy \(x=\frac{2003}{2007}\)
Chúc bạn học tốt ~
%$&%$^%&*^%$%#$$%^%&^$%^#$^#^%&%^$%@#&^^%^&%%#%$#$#%$E%^$%^#$#@%@^#$%^E%^E$#&^^#$@#%^%^*&%#&(*($@$#(*^&^&*%$%#$#*%^^%$%^#^%#^*^>>>>>>>>>.............................................................................................. . mình không biết
\(\dfrac{2003}{20025}\) hay sao ý