Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 2x-3y-4z=24
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{1}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{2x-3y-4z}{2\cdot1-3\cdot6-4\cdot3}=\dfrac{24}{-28}=\dfrac{-6}{7}\)
=>x=-6/7; y=-36/7; z=-18/7
b: 6x=10y=15z
=>x/10=y/6=z/4=k
=>x=10k; y=6k; z=4k
x+y-z=90
=>10k+6k-4k=90
=>12k=90
=>k=7,5
=>x=75; y=45; z=30
d: x/4=y/3
=>x/20=y/15
y/5=z/3
=>y/15=z/9
=>x/20=y/15=z/9
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-4}=25\)
=>x=500; y=375; z=225
\(D=\dfrac{-x+12+8}{x-12}=-1+\dfrac{8}{x-12}\)
Để D nhỏ nhất thì x-12=-1
=>x=11
\(C=\dfrac{3x-40}{x-13}=\dfrac{3x-39-1}{x-13}=3-\dfrac{1}{x-13}\)
Để C lớn nhât thì 1/x-13 nhỏ nhất
=>x-13=-1
=>x=12
\(\dfrac{55-x}{1963}\) + \(\dfrac{50-x}{1968}\) + \(\dfrac{45-x}{1973}\) + \(\dfrac{40-x}{1978}\) + 4 = 0
(1 + \(\dfrac{55-x}{1963}\) ) + ( 1 + \(\dfrac{50-x}{1968}\)) + (1+ \(\dfrac{45-x}{1973}\))+ (1 + \(\dfrac{40-x}{1978}\)) = 0
\(\dfrac{1963+55-x}{1963}\) + \(\dfrac{1968+50-x}{1968}\)+\(\dfrac{1973+45-x}{1973}\)+\(\dfrac{1978+40-x}{1978}\)=0
\(\dfrac{2018-x}{1963}\)+\(\dfrac{2018-x}{1968}\)+\(\dfrac{2018-x}{1973}\)+\(\dfrac{2018-x}{1973}\)+\(\dfrac{2018-x}{1978}\)=0
(2018 - \(x\))\(\times\)( \(\dfrac{1}{1963}\)+\(\dfrac{1}{1986}\)+\(\dfrac{1}{1973}\)+) =0
2018 \(-x\) = 0
\(x\) = 2018
\(\dfrac{55-x}{1963}+\dfrac{50-x}{1968}+\dfrac{45-x}{1973}+\dfrac{40-x}{1978}+4=0\)
\(\Rightarrow\text{ }\dfrac{55-x}{1963}+\dfrac{50-x}{1968}+\dfrac{45-x}{1973}+\dfrac{40-x}{1978}+1+1+1+1=0\)
\(\Rightarrow\text{ }\left(\dfrac{55-x}{1963}+1\right)+\left(\dfrac{50-x}{1968}+1\right)+\left(\dfrac{45-x}{1973}+1\right)+\left(\dfrac{40-x}{1978}+1\right)=0\)
\(\Rightarrow\text{ }\dfrac{2018-x}{1963}+\dfrac{2018-x}{1968}+\dfrac{2018-x}{1973}+\dfrac{2018-x}{1978}=0\)
\(\Rightarrow\text{ }\left(2018-x\right)\left(\dfrac{1}{1963}+\dfrac{1}{1968}+\dfrac{1}{1973}+\dfrac{1}{1978}\right)=0\)
Mà \(\dfrac{1}{1963}+\dfrac{1}{1968}+\dfrac{1}{1973}+\dfrac{1}{1978}\ne0\)
\(\Rightarrow\text{ }2018-x=0\)
\(\Rightarrow\text{ }x=2018-0\)
\(\Rightarrow\text{ }x=2018\)
Vậy, \(x=2018.\)
a: \(\dfrac{2032-x}{25}+\dfrac{2053-x}{23}+\dfrac{2070-x}{21}+\dfrac{2083-x}{19}-10=0\)
\(\Leftrightarrow\left(\dfrac{2032-x}{25}-1\right)+\left(\dfrac{2053-x}{23}-2\right)+\left(\dfrac{2070-x}{21}-3\right)+\left(\dfrac{2083-x}{19}-4\right)=0\)
=>2007-x=0
hay x=2007
b: \(\Leftrightarrow x+\left(1+1+1+1+1+1+1\right)+\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\right)=0\)
\(\Leftrightarrow x+7+\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)=0\)
=>x+7+1/3-1/10=0
hay x=-217/30
Câu 2:
\(\dfrac{x-10}{30}+\dfrac{x-14}{43}+\dfrac{x-5}{95}+\dfrac{x-148}{8}=0\)
\(\Leftrightarrow\left(\dfrac{x-10}{30}-3\right)+\left(\dfrac{x-14}{43}-2\right)+\left(\dfrac{x-5}{95}-1\right)+\left(\dfrac{x-148}{8}+6\right)=0\)
=>x-100=0
hay x=100
\(\dfrac{17}{40}=\dfrac{7}{10}-x+\dfrac{13}{20}\)
\(\Rightarrow\dfrac{17}{40}=\dfrac{28}{40}-x+\dfrac{26}{40}\)
\(\Rightarrow\dfrac{17}{40}=\dfrac{44}{40}-x\)
\(\Rightarrow x=\dfrac{44}{40}-\dfrac{17}{40}\)
\(\Rightarrow x=\dfrac{27}{40}\)
\(\dfrac{3x-40}{50}+\dfrac{3x-10+2x+60+4x-360}{40}=0\)
=> \(\dfrac{3x-40}{50}+\dfrac{9x-310}{40}=0\)
=> \(\dfrac{3x-40}{50}=\dfrac{-9x+310}{40}\)
=> \(40\left(3x-40\right)=50\left(-9x+310\right)\)
=> \(120x-1600=-450x+15500\)
=> \(120x+450x=15500+1600\)
Hay \(570x=17100\)
=>x = 30
Hơi dài nhé bạn
\(\dfrac{3x-40}{50}\)+\(\dfrac{3x-10+2x+60+4x-360}{40}\)=0
⇒\(\dfrac{3x-40}{50}\)+\(\dfrac{9x-310}{40}\)=0
⇒\(\dfrac{3x-40}{50}\)=\(\dfrac{9x-310}{40}\)
⇒40(3x -40) = 50(-9x+310)
⇒120x - 1600 = -450x + 15500
⇒120x + 450x = 15500 + 1600
Mặt khác: 570x = 17100
⇒x = 30